CSCI-GA.1144-001

PAC II

Lecture 1: Bits, Data, and Operations

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com
Who Am I?

- Mohamed Zahran (aka Z)
- Computer architecture/OS/Compilers Interaction
- http://www.mzahran.com
- Office hours: Tue 2:00-4:00 pm
- Room: WWH 320
Formal Goals of This Course

• What happens under the hood in computer systems
• How are software and hardware related
• From algorithms to circuits

You will be able to write programs in C and understand what’s going on underneath.
Informal Goals of This Course

• To get more than an A
• To build strong background in computer science
• To use what you have learned in MANY different contexts
• To enjoy the course!
The Course Web Page

• Lecture slides
• Info about mailing list, labs, ...
• Useful links (manuals, tools, ...)
Grading

- Homework : 30%
- Project : 15%
- Midterm Exam : 20%
- Final Exam : 35%
So...What is a computer?

“The Computer is only a fast idiot, it has no imagination; it cannot originate action. It is, and will remain, only a tool to human beings.”

American Library Association’s reaction to UNIVAC computer Exhibit at the 1964 New York World’s fair.

A computer is a symbol-processing machine

Computer: electronic genius?

• NO! Electronic idiot!
 • Does exactly what we tell it to, nothing more.
It all starts with a “problem”
Automating Algorithm Execution

• Algorithm *development*
 – A detailed know-how
 – Granularity depends on the machine
 – Done with human brain power

• Algorithm *execution*
 – Sequencing
 – Execution
Two Side Effects

• Algorithm must handle different set of inputs
• Algorithm must be presented to the machine in a *formal way*
Hardware and Software

Diagram showing layers of software:
- Applications software
- Systems software
- Hardware
From Theory to Practice

• In theory, computer can compute anything that’s possible to compute
 – given enough memory and time

• In practice, solving problems involves computing under constraints.
 – time
 • weather forecast, next frame of animation, ...
 – cost
 • cell phone, automotive engine controller, ...
 – power
 • cell phone, handheld video game, ...
Can We Solve Anything With a Computer?

• **Undecidable**
 – Cannot be solved by an algorithm
 – *e.g.* Halting problem (given a program and inputs for it, decide whether it will run forever or will eventually halt.)

• **Unsolvable**
 – No finite algorithm
 – *e.g.* Goldbach’s conjecture (Every even number greater than 2 can be written as the sum of two primes.)

• **Intractable**
 – Unreasonable amount of time and resources
Hierarchical View of a Computer System

• A computer system is complicated
• In order to facilitate its study and analysis, it is advisable to divide it into levels
How do we Understand computers?

- Need to understand *abstractions* such:
 - Algorithms
 - Applications software
 - Systems software
 - Assembly Language
 - Machine Language (ISA)
 - Microarchitecture
 - Logic design
 - Device level
 - Semiconductors/Silicon used to build transistors
 - Properties of atoms, electrons, and quantum dynamics
Two Recurring Themes

• Abstraction
 – Productivity enhancer – don’t need to worry about details…
 You can drive a car without knowing how the internal combustion engine works.
 – ...until something goes wrong!
 Where’s the dipstick? What’s a spark plug?
 – Important to understand the components and how they work together.

• Hardware vs. Software
 – It’s not either/or – both are components of a computer system.
 – Even if you specialize in one, you should understand capabilities and limitations of both.
Problem \rightarrow Algorithm Development \rightarrow Programmer

- High Level Language
 - Compiler (translator)
 - Assembly Language
 - Assembler (translator)
 - Machine Language
 - Control Unit (Interpreter)
 - Microarchitecture
 - Microsequencer (Interpreter)
 - Logic Level
 - Device Level \rightarrow Semiconductors \rightarrow Quantum
Problem Definition Level

- Taking a complex real-life problem and formulating it so as to be solved by a computer (abstraction/modeling)
- Requires simplification (which details to remove?)
- Using mathematical model, graph theory, etc.
Algorithm Level

- Precise step-by-step procedure
- Steps must be well defined, to be executed by a machine (no ambiguity)
- Algorithm development is a creative process
- Finite number of steps
- Pseudocode or flowchart
High-Level Language Level

• e.g. C/C++/C#, Java, Fortran, Lisp, etc.
• Used by application programmers and systems programmers
• Can we build machines executing HLL right away?
• Compiler’s job is not only translating
Assembly Language Level

- More primitive instructions than HLL
- English version of the machine language + some more
- User mode and kernel mode
- Can we go from this level to HLL?
ISA
(Instruction Set Architecture) level

• A very important abstraction
 – interface between hardware and low-level software
 – advantage: *different implementations of the same architecture*
 – disadvantage: *sometimes prevents using new innovations*

• Modern instruction set architectures:
 – x86_64, IA-32, PowerPC, MIPS, SPARC, ARM, and others
Instructions

- Language of the Machine
- Platform-specific
- A limited set of machine language commands "understood" by hardware (e.g. ADD, LOAD, STORE, RET)
- We’ll study MIPS instruction set architecture and x86 instruction set architecture
From HLL to ISA: an Example

High-level language program (in C)

```
swap(int v[], int k)
{
    int temp;
    temp = v[k];
    v[k] = v[k+1];
    v[k+1] = temp;
}
```

Assembly language program (for MIPS)

```
swap:
    mul $2, $5, 4
    add $2, $4, $2
    lw $15, 0($2)
    lw $16, 4($2)
    sw $15, 4($2)
    sw $16, 0($2)
    jr $31
```

Binary machine language program (for MIPS)

```
000000000101000010000000000000110000
000000000000000000000000000000000000
100110001100010000000000000000000000
100010011110010000000000000000000000
101010011110010000000000000000000000
100000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
100000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
```
Microarchitecture Level

- Resources and techniques used to implement the ISA
 - Pentium IV implements the x86 ISA
 - Motorola G4 implements the Power PC ISA
- Register files, ALU, Fetch unit, etc.
- Realize intended cost/performance goals
- Interpretation done by the control unit
Logic-Design Level

- Gates
- Multiplexers, decoders, PLA, etc.
- Synchronous (i.e. clocked) : the most widely used
- Asynchronous
Device Level

• Transistors and wires
• Implement the digital logic gates
• Lower level:
 – Solid state physics
 – Machine looks more analog than digital at that level!
Many Choices at Each Level

Solve a system of equations

- Red-black SOR
- Gaussian elimination
- Jacobi iteration
- Multigrid

FORTRAN
- C
- C++
- Java

PowerPC
- Intel x86
- Atmel AVR

- Centrino
- Pentium 4
- Xeon

- Ripple-carry adder
- Carry-lookahead adder

- CMOS
- Bipolar
- GaAs

Tradeoffs:
- cost
- performance
- power
- (etc.)
Our First Steps...
How do we represent data in a computer?

• How do we represent information using electrical signals?
• At the lowest level, a computer is an electronic machine.
• Easy to recognize two conditions:
 – presence of a voltage - we call this state “1”
 – absence of a voltage - we call this state “0”
A Computer is a Binary Digital Machine

- Basic unit of information is the *binary digit*, or *bit*.
- Values with more than two states require multiple bits.
 - A collection of *two* bits has *four* possible states: 00, 01, 10, 11
 - A collection of *three* bits has *eight* possible states: 000, 001, 010, 011, 100, 101, 110, 111
 - *A collection of* n *bits has* 2^n *possible states.*
What kinds of data do we need to represent?

- **Numbers** - signed, unsigned, integers, floating point, complex, rational, irrational, ...
- **Text** - characters, strings, ...
- **Images** - pixels, colors, shapes, ...
- **Sound**
- **Logical** - true, false
- **Instructions**
- ...

- **Data type:**
 - *representation* and *operations* within the computer
Unsigned Integers

• Non-positional notation
 – could represent a number (“5”) with a string of ones (“1111”)
 – problems?

• Weighted positional notation
 – like decimal numbers: “329”
 – “3” is worth 300, because of its position, while “9” is only worth 9

\[
\begin{align*}
329 & = 3 \times 10^2 + 2 \times 10^1 + 9 \times 10^0 \\
101 & = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0
\end{align*}
\]
Unsigned Integers (cont.)

• An n-bit unsigned integer represents 2^n values: from 0 to 2^n-1.

<table>
<thead>
<tr>
<th></th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>
Unsigned Binary Arithmetic

- Base-2 addition – just like base-10!
 - add from right to left, propagating carry

\[
\begin{array}{c}
10010 \\
+ 1001 \\
\hline
11011
\end{array}
\quad
\begin{array}{c}
10010 \\
+ 1011 \\
\hline
11101
\end{array}
\quad
\begin{array}{c}
11111 \\
+ 1 \\
\hline
10000
\end{array}
\quad
\begin{array}{c}
10111 \\
+ 111 \\
\hline
10111
\end{array}
\]
How About Negative Numbers

<table>
<thead>
<tr>
<th>Sign Magnitude:</th>
<th>One's Complement</th>
<th>Two's Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 = +0</td>
<td>000 = +0</td>
<td>000 = +0</td>
</tr>
<tr>
<td>001 = +1</td>
<td>001 = +1</td>
<td>001 = +1</td>
</tr>
<tr>
<td>010 = +2</td>
<td>010 = +2</td>
<td>010 = +2</td>
</tr>
<tr>
<td>011 = +3</td>
<td>011 = +3</td>
<td>011 = +3</td>
</tr>
<tr>
<td>100 = -0</td>
<td>100 = -3</td>
<td>100 = -4</td>
</tr>
<tr>
<td>101 = -1</td>
<td>101 = -2</td>
<td>101 = -3</td>
</tr>
<tr>
<td>110 = -2</td>
<td>110 = -1</td>
<td>110 = -2</td>
</tr>
<tr>
<td>111 = -3</td>
<td>111 = -0</td>
<td>111 = -1</td>
</tr>
</tbody>
</table>

- Issues: balance, number of zeros, ease of operations
- Which one is best? Why?
Signed Integers

- With \(n \) bits, we have \(2^n \) distinct values.
 - assign about half to positive integers and about half to negative

- Positive integers
 - just like unsigned - zero in most significant (MS) bit
 \(00101 = 5 \)

- Negative integers
 - sign-magnitude - set MS bit to show negative, other bits are the same as unsigned
 \(10101 = -5 \)
 - one's complement - flip every bit to represent negative
 \(11010 = -5 \)
 - in either case, MS bit indicates sign: 0=positive, 1=negative
Two’s Complement

- Problems with sign-magnitude and 1’s complement
 - two representations of zero (+0 and -0)
 - arithmetic circuits are complex
 - How to add two sign-magnitude numbers?
 - e.g., try 2 + (-3)
 - How to add to one’s complement numbers?
 - e.g., try 4 + (-3)
- Two’s complement representation developed to make circuits easy for arithmetic.
 - for each positive number (X), assign value to its negative (-X),
 such that X + (-X) = 0 with “normal” addition, ignoring carry out

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>00101</td>
<td>01001</td>
<td></td>
</tr>
<tr>
<td>11011</td>
<td>10111</td>
<td></td>
</tr>
<tr>
<td>00000</td>
<td>00000</td>
<td></td>
</tr>
</tbody>
</table>
Two’s Complement Signed Integers

- MS bit is sign bit.
- Range of an n-bit number: \(-2^{n-1}\) through \(2^{n-1} - 1\).
 - The most negative number \((-2^{n-1})\) has no positive counterpart.

-2³	2²	2¹	2⁰		-2³	2²	2¹	2⁰
-----	----	----	----		-----	----	----	----
0	0	0	0		0	0	0	0
0	0	0	1		1	0	0	1
0	0	1	0		2	1	0	1
0	0	1	1		3	1	0	1
0	1	0	0		4	1	1	0
0	1	0	1		5	1	1	0
0	1	1	0		6	1	1	0
0	1	1	1		7	1	1	1
Converting Binary (2’s C) to Decimal

1. If leading bit is one, take two’s complement to get a positive number.

2. Add powers of 2 that have “1” in the corresponding bit positions.

3. If original number was negative, add a minus sign.

<table>
<thead>
<tr>
<th>n</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
</tr>
</tbody>
</table>
Examples

\[
X = 00100111_{\text{two}} \\
= 2^5+2^2+2^1+2^0 = 32+4+2+1 \\
= 39_{\text{ten}}
\]

\[
X = 11100110_{\text{two}} \\
-X = 00011010 \\
= 2^4+2^3+2^1 = 16+8+2 \\
= 26_{\text{ten}}
\]

\[
X = -26_{\text{ten}}
\]

\[
\begin{array}{c|c}
 n & 2^n \\
\hline
 0 & 1 \\
 1 & 2 \\
 2 & 4 \\
 3 & 8 \\
 4 & 16 \\
 5 & 32 \\
 6 & 64 \\
 7 & 128 \\
 8 & 256 \\
 9 & 512 \\
 10 & 1024 \\
\end{array}
\]

Assuming 8-bit 2’s complement numbers.
Converting Decimal to Binary (2’s C)

- **First Method**: *Division*

1. Find magnitude of decimal number. (Always positive.)
2. Divide by two - remainder is least significant bit.
3. Keep dividing by two until answer is zero, writing remainders from right to left.
4. Append a zero as the MS bit; if original number was negative, take two’s complement.

\[X = 104_{\text{ten}} \]

<table>
<thead>
<tr>
<th>Dividend</th>
<th>Quotient</th>
<th>Remainder</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>104/2</td>
<td>52</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>52/2</td>
<td>26</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>26/2</td>
<td>13</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>13/2</td>
<td>6</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6/2</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3/2</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1/2</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

\[X = 01101000_{\text{two}} \]
Converting Decimal to Binary (2's C)

- **Second Method:** *Subtract Powers of Two*

1. Find magnitude of decimal number.
2. Subtract largest power of two less than or equal to number.
3. Put a one in the corresponding bit position.
4. Keep subtracting until result is zero.
5. Append a zero as MS bit; if original was negative, take two’s complement.

<table>
<thead>
<tr>
<th>n</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
</tr>
</tbody>
</table>

\[
X = 104_{\text{ten}}
\]

\[
104 - 64 = 40 \quad \text{bit 6}
\]

\[
40 - 32 = 8 \quad \text{bit 5}
\]

\[
8 - 8 = 0 \quad \text{bit 3}
\]

\[
X = 01101000_{\text{two}}
\]
Operations: Arithmetic and Logical

• We now have a good representation for signed integers, so let’s look at some arithmetic operations:
 – Addition
 – Subtraction
 – Sign Extension
• We’ll also look at overflow conditions for addition.
• Multiplication, division, etc., can be built from these basic operations.
• Logical operations are also useful:
 – AND
 – OR
 – NOT
Addition

- As we've discussed, 2's comp. addition is just binary addition.
 - assume all integers have the same number of bits
 - ignore carry out
 - for now, assume that sum fits in n-bit 2's comp. representation

\[
\begin{array}{c}
01101000 \quad (104) \\
+ \quad 11110000 \quad (-16) \\
\hline
01011000 \quad (98)
\end{array} \quad + \quad \begin{array}{c}
11110110 \quad (-10) \\
\hline
 \quad (-19)
\end{array}
\]

\[
\begin{array}{c}
01101000 \quad (104) \\
+ \quad 11110110 \quad (-9) \\
\hline
01011000 \quad (98)
\end{array}
\]
Subtraction

- Negate subtrahend (2nd no.) and add.
 - assume all integers have the same number of bits
 - ignore carry out
 - for now, assume that difference fits in n-bit 2’s comp. representation

```
  01101000 (104)   11110110 (-10)
-  00010000 (16)   -             (-9)
  01101000 (104)   11110110 (-10)
+  11110000 (-16)   +             (9)
  01011000 (88)   -             (-1)
```
Sign Extension

• To add two numbers, we must represent them with the same number of bits.

• If we just pad with zeroes on the left:

<table>
<thead>
<tr>
<th>4-bit</th>
<th>8-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>00000100</td>
</tr>
<tr>
<td>1100</td>
<td>00001100</td>
</tr>
</tbody>
</table>

• Instead, replicate the MS bit -- the sign bit:

<table>
<thead>
<tr>
<th>4-bit</th>
<th>8-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>00000100</td>
</tr>
<tr>
<td>1100</td>
<td>11111100</td>
</tr>
</tbody>
</table>
Detecting Overflow

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
 - overflow when adding two positives yields a negative
 - or, adding two negatives gives a positive
 - or, subtract a negative from a positive and get a negative
 - or, subtract a positive from a negative and get a positive
Logical Operations

- Operations on logical TRUE or FALSE
 - two states -- takes one bit to represent: TRUE=1, FALSE=0

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A AND B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A OR B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- View n-bit number as a collection of n logical values
 - operation applied to each bit independently
Examples of Logical Operations

- **AND**
 - useful for clearing bits
 - AND with zero = 0
 - AND with one = no change

- **OR**
 - useful for setting bits
 - OR with zero = no change
 - OR with one = 1

- **NOT**
 - unary operation -- one argument
 - flips every bit

Examples:

\[
\begin{align*}
\text{AND} \quad 11000101 & \quad 00001111 \\
\text{AND} \quad & \quad 00000101 \\
\text{OR} \quad 11000101 & \quad 00001111 \\
\text{OR} \quad & \quad 11001111 \\
\text{NOT} \quad 11000101 & \quad 00111010 \\
\end{align*}
\]
Hexadecimal Notation

- It is often convenient to write binary (base-2) numbers as hexadecimal (base-16) numbers instead.
 - fewer digits -- four bits per hex digit
 - less error prone -- easy to corrupt long string of 1’s and 0’s

<table>
<thead>
<tr>
<th>Binary</th>
<th>Hex</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Binary</th>
<th>Hex</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>B</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>C</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>D</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>E</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>F</td>
<td>15</td>
</tr>
</tbody>
</table>
Converting from Binary to Hexadecimal

• Every four bits is a hex digit.
 – start grouping from right-hand side

011101010001111010011010111

\[\begin{array}{cccccccc}
0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
\end{array} \]

\[\begin{array}{cccccccc}
3 & A & 8 & F & 4 & D & 7 \\
\end{array} \]

This is not a new machine representation, just a convenient way to write the number.
Fractions: Fixed-Point

• How can we represent fractions?
 – Use a “binary point” to separate positive from negative powers of two -- just like “decimal point.”
 – 2’s comp addition and subtraction still work.
 • if binary points are aligned

\[
\begin{array}{c}
00101000.101 \quad (40.625) \\
+ \quad 11111110.110 \quad (-1.25) \\
\hline
00100111.011 \quad (39.375)
\end{array}
\]
• We need a way to represent
 - numbers with fractions, e.g., 3.1416
 - very small numbers, e.g., .000000001
 - very large numbers, e.g., 3.15576×10^9

• Representation:
 - sign, exponent, significand: $(-1)^{\text{sign}} \times \text{significand} \times 2^{\text{exponent}}$
 - more bits for significand gives more accuracy
 - more bits for exponent increases range

• IEEE 754 floating point standard:
 - single precision: 8 bit exponent, 23 bit significand
 - double precision: 11 bit exponent, 52 bit significand
IEEE 754 floating-point standard

- Leading “1” bit of significand is implicit (called hidden 1 technique, except when exp = -127)
- Exponent is “biased” to make sorting easier
 - all 0s is smallest exponent
 - all 1s is largest exponent
 - bias of 127 for single precision and 1023 for double precision
 - summary: \((-1)^{\text{sign}} \times \left(1+\text{significand}\right) \times 2^{\text{exponent} - \text{bias}}\)

- Example:
 - decimal: \(-.75 = -\left(\frac{1}{2} + \frac{1}{4}\right)\)
 - binary: \(-.11 = -1.1 \times 2^{-1}\)
 - floating point: exponent = 126 = 01111110
 - IEEE single precision: \(10111111010000000000000000000000\)
More about IEEE floating Point Standard

Single Precision:

\((-1)^{\text{sign}} \times (1 + \text{significand}) \times 2^{\text{exponent} - 127}\)

The variables shown in red are the numbers stored in the machine

Important! Significant is always 0.XXXX
Floating Point Example

what is the decimal equivalent of

1 01110110 10110000...0
Text: ASCII Characters

- **ASCII**: Maps 128 characters to 7-bit code.
 - both printable and non-printable (ESC, DEL, ...) characters

<table>
<thead>
<tr>
<th>ASCII</th>
<th>Character</th>
<th>ASCII</th>
<th>Character</th>
<th>ASCII</th>
<th>Character</th>
<th>ASCII</th>
<th>Character</th>
<th>ASCII</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>nul</td>
<td>10</td>
<td>dle</td>
<td>20</td>
<td>sp</td>
<td>30</td>
<td>0</td>
<td>40</td>
<td>@</td>
</tr>
<tr>
<td>01</td>
<td>soh</td>
<td>11</td>
<td>dcl</td>
<td>21</td>
<td>!</td>
<td>31</td>
<td>1</td>
<td>41</td>
<td>A</td>
</tr>
<tr>
<td>02</td>
<td>stx</td>
<td>12</td>
<td>dc2</td>
<td>22</td>
<td>"</td>
<td>32</td>
<td>2</td>
<td>42</td>
<td>B</td>
</tr>
<tr>
<td>03</td>
<td>etx</td>
<td>13</td>
<td>dc3</td>
<td>23</td>
<td>#</td>
<td>33</td>
<td>3</td>
<td>43</td>
<td>C</td>
</tr>
<tr>
<td>04</td>
<td>eot</td>
<td>14</td>
<td>dc4</td>
<td>24</td>
<td>$</td>
<td>34</td>
<td>4</td>
<td>44</td>
<td>D</td>
</tr>
<tr>
<td>05</td>
<td>enq</td>
<td>15</td>
<td>nak</td>
<td>25</td>
<td>%</td>
<td>35</td>
<td>5</td>
<td>45</td>
<td>E</td>
</tr>
<tr>
<td>06</td>
<td>ack</td>
<td>16</td>
<td>syn</td>
<td>26</td>
<td>&</td>
<td>36</td>
<td>6</td>
<td>46</td>
<td>F</td>
</tr>
<tr>
<td>07</td>
<td>bel</td>
<td>17</td>
<td>etb</td>
<td>27</td>
<td>'</td>
<td>37</td>
<td>7</td>
<td>47</td>
<td>G</td>
</tr>
<tr>
<td>08</td>
<td>bs</td>
<td>18</td>
<td>can</td>
<td>28</td>
<td>(</td>
<td>38</td>
<td>8</td>
<td>48</td>
<td>H</td>
</tr>
<tr>
<td>09</td>
<td>ht</td>
<td>19</td>
<td>em</td>
<td>29</td>
<td>)</td>
<td>39</td>
<td>9</td>
<td>49</td>
<td>I</td>
</tr>
<tr>
<td>0a</td>
<td>nl</td>
<td>1a</td>
<td>sub</td>
<td>2a</td>
<td>*</td>
<td>3a</td>
<td>:</td>
<td>4a</td>
<td>J</td>
</tr>
<tr>
<td>0b</td>
<td>vt</td>
<td>1b</td>
<td>esc</td>
<td>2b</td>
<td>+</td>
<td>3b</td>
<td>;</td>
<td>4b</td>
<td>K</td>
</tr>
<tr>
<td>0c</td>
<td>np</td>
<td>1c</td>
<td>fs</td>
<td>2c</td>
<td>,</td>
<td>3c</td>
<td><</td>
<td>4c</td>
<td>L</td>
</tr>
<tr>
<td>0d</td>
<td>cr</td>
<td>1d</td>
<td>gs</td>
<td>2d</td>
<td>-</td>
<td>3d</td>
<td>=</td>
<td>4d</td>
<td>M</td>
</tr>
<tr>
<td>0e</td>
<td>so</td>
<td>1e</td>
<td>rs</td>
<td>2e</td>
<td>.</td>
<td>3e</td>
<td>></td>
<td>4e</td>
<td>N</td>
</tr>
<tr>
<td>0f</td>
<td>si</td>
<td>1f</td>
<td>us</td>
<td>2f</td>
<td>/</td>
<td>3f</td>
<td>?</td>
<td>4f</td>
<td>O</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>70</td>
<td>p</td>
<td>71</td>
<td>q</td>
<td>72</td>
<td>r</td>
<td>73</td>
<td>s</td>
<td>74</td>
<td>t</td>
</tr>
<tr>
<td>75</td>
<td>u</td>
<td>76</td>
<td>v</td>
<td>77</td>
<td>w</td>
<td>78</td>
<td>x</td>
<td>79</td>
<td>y</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>81</td>
<td></td>
<td>82</td>
<td></td>
<td>83</td>
<td></td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>86</td>
<td></td>
<td>87</td>
<td></td>
<td>88</td>
<td></td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>91</td>
<td></td>
<td>92</td>
<td></td>
<td>93</td>
<td></td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>96</td>
<td></td>
<td>97</td>
<td></td>
<td>98</td>
<td></td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>101</td>
<td></td>
<td>102</td>
<td></td>
<td>103</td>
<td></td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>106</td>
<td></td>
<td>107</td>
<td></td>
<td>108</td>
<td></td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>111</td>
<td></td>
<td>112</td>
<td></td>
<td>113</td>
<td></td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>116</td>
<td></td>
<td>117</td>
<td></td>
<td>118</td>
<td></td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>121</td>
<td></td>
<td>122</td>
<td></td>
<td>123</td>
<td></td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>126</td>
<td></td>
<td>127</td>
<td></td>
<td>128</td>
<td></td>
<td>129</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>del</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Interesting Properties of ASCII Code

• What is relationship between a decimal digit ('0', '1', ...) and its ASCII code?

• What is the difference between an upper-case letter ('A', 'B', ...) and its lower-case equivalent ('a', 'b', ...)?

• Given two ASCII characters, how do we tell which comes first in alphabetical order?
Other Data Types

• Text strings
 – sequence of characters, terminated with NULL (0)

• Image
 – array of pixels
 • monochrome: one bit (1/0 = black/white)
 • color: red, green, blue (RGB) components (e.g., 8 bits each)
 • other properties: transparency
 – hardware support:
 • typically none, in general-purpose processors
 • MMX -- multiple 8-bit operations on 32-bit word

• Sound
 – sequence of fixed-point numbers
Conclusions

• In this lecture we made our first steps toward understanding bits, data, and operations on them.
• Computers understand only binary
• Binary presentation is enough to deal with many different type of data (signed/unsigned numbers, floating points, ASCII, ...)