Midterm Part 1A (35 Points)

1. (a) Solution. 30 billion.
 (b) Solution. 3.6 million (will accept 3 or 4 million).
 (c) Solution. 2 billion.
 (d) Solution. 1 million.
 (e) Solution. 1 million.
 (f) Solution. 10 million.
 (g) Solution. 20 times.

2. Solution. [4, 7, 23, 9, 14, 1, 5, 12, 15, 19]

3. (a) Solution. 011010
 (b) Solution. 1100

4. (a) Solution. $O(\lg n)$
 (b) Solution. $O(n)$
 (c) Solution. $O(\lg n)$
Midterm Part 2A (65 Points)

1. Solution. 17

2. Solution.

 (a) 2 Fenwick Trees: one for counting negatives, the other for counting zeros.
 (b) Change the corresponding entry in the zero Fenwick tree to 1.
 (c) Count the number of zeros and number of negatives in the range. If the number
 of zeros is positive, it is zero. Otherwise, it is positive iff the number of negatives
 is even.

3. Solution. 01010, 10010, 11110, 11000, 11011.

4. Solution.

```java
long[][] cache = new long[10001][14]; // Filled with -1
long count(int n, int high)
{
    if (high < 0) return 0;
    if (n <= 0) return n==0?1:0;
    if (cache[n][high] != -1) return cache[n][high];
    return count(n, high-1) + count(n-(1<<high), high);
}
long count(int n) { return count(n,13); }
```

5. Solution.

```java
int bs(int L, int R)
{
    if (L == R) return L;
    int M = (L+R)/2;
    return canComplete(M) ? bs(L,M) : bs(M+1,R);
}
int minStrength() { return bs(0,100000000); }
```