Stacking Boxes

- Read Exercise 1
Stacking Boxes

• Solution
 • Turns out there are only a relatively few possible configurations for the boxes
 • Determine all possible positions, then complete search on those positions
 • In particular, there can only be 1, 2, 3, or 4 stacks of boxes
Stacking Boxes

• Solution, 1-stack
 • 1000 possible positions for a singular stack
 • For each position on the number line, compute the cost of moving all boxes to the position
 • Take the minimum cost for a 1-stack solution
 • Runtime: $O(N)$
Stacking Boxes

• Solution, 2-stacks

 • Use the Sieve of Eratosthenes to compute all primes up to 1000

 • For each start position i,

 • Compute the cost of moving all boxes to i and $i+p$ for all possible primes p (such that $i+p < 1000$)

 • Boxes less than $(2i+p)/2$ move to i; otherwise to $i+p$

 • Precompute the sum of boxes from 0 to position x, use to compute the number of boxes in an interval
Stacking Boxes

- Solution, 2-stacks
 - Keep track of the minimum 2-stack solution
 - Runtime: $O(N \times N / \log(N))$
Stacking Boxes

- Solution, 3-stacks
 - For all 3-stack solutions, one pair of boxes must be distance 2 from one another

```
Stack A

Stack B

Stack C
```

\[r = p + q \]
Stacking Boxes

• Solution, 3-stacks
 • For all 3-stack solutions, one pair of boxes must be distance 2 from one another
 • Proof by contradiction:
 • Let p, q, r be primes such that $p \neq 2$, $q \neq 2$, and $r = p + q$. Then p and q are both odd, so $2 | (p + q)$ and $(p + q) > 4$. But then r cannot be prime.
 • So either p or q must be 2.
Stacking Boxes

• Solution, 3-stacks
 • So, for each start position \(i \),
 • For each prime \(p \) such that \(p+2 \) is prime,
 • Compute the cost of moving boxes to stacks at \(i \), \(i+p \), \(i+p+2 \)
 • Compute the cost of moving boxes to stacks at \(i \), \(i+2 \), \(i+2+p \)
 • Keep track of the minimum 3-stack solution

• Runtime: \(O(N \times N / \log(N)) \)
 • But very few possibilities
Stacking Boxes

• Solution, 4-stacks

• There is only one possible set of distances for 4-stack solutions

\[r = p + q \]
\[s = q + r \]
\[t = p + q + r \]
Stacking Boxes

• Solution, 4-stacks
 • There is only one possible set of distances for 4-stack solutions

Stack A Stack B Stack C Stack D

2 q r s t

r = 2 + q
s = q + r
t = 2 + q + r
Stacking Boxes

• Solution, 4-stacks

• There is only one possible set of distances for 4-stack solutions

\[r = 2 + q \]
\[s = q + 2 \]
\[t = 2 + q + 2 \]
Stacking Boxes

• Solution, 4-stacks

• There is only one possible set of distances for 4-stack solutions

\[r = 2 + 3 \]
\[s = 3 + 2 \]
\[t = 2 + 3 + 2 \]
Stacking Boxes

• Solution, 4-stacks
 • For each starting position i,
 • Compute the cost of moving boxes to i, $i+2$, $i+5$, and $i+7$
 • Keep track of the minimum 4-stack solution
• Runtime: $O(N)$
• Output the minimum of all solutions
Cyberline

• Read the exercise
public String lastCyberword(String cyberline) {
 String[] w = cyberline.replaceAll("-","").replaceAll("[^a-zA-Z0-9]"," "").split(" ");
 return w[w.length-1];
}
Stammering Aliens

• Read the exercise
Stammering Aliens

• Solution
 • Use a good hash function to hash the substrings and compare them
 • Too slow to store and pairwise compare strings
 • Hash function
 • hash(“babab”) = \((2 \times 31^4 + 1 \times 31^3 + 1 \times 31^2 + 1 \times 31^1 + 1 \times 3^0) \mod \text{LARGE_PRIME}\) = 1,877,826
 • 31 is a prime number greater than 26
 • Intuitively good for reducing collisions
 • \text{LARGE_PRIME} = 1,000,000,007
Stammering Aliens

• Solution

 • Modulo arithmetic properties

 • \((a+b) \mod p = ((a \mod p) + (b \mod p)) \mod p\)

 • \((a - b) \mod p = ((a \mod p) - (b \mod p)) \mod p\)

 • \((ab) \mod p = ((a \mod p) (b \mod p)) \mod p\)
Stammering Aliens

• Solution

 • Sweep through the substring, computing all substring hashes of length L
 • Precompute $31^{(L-1)} \% \text{LARGE}_{-}\text{PRIME}$ using fast exponentiation
 • Remove the leftmost character from the hash by subtracting $(\text{char}_\text{value} \times 31^{(L-1)}) \% \text{LARGE}_{-}\text{PRIME}$
 • Add the rightmost character to the hash by multiplying by 31 and adding char_value
Stammering Aliens

- Solution
 - Maximum length of the string substring is strlen - nStrings
 - e.g., 4 cccccc
 - Try from max length down to 1
 - Too slow! :)
 - Binary search between 1 and max length
 - Turns out if you can find a solution of length L, you can find a solution of L-1 – this is a monotonic increasing function, so binary search