Randomness and Cryptography

Yevgeniy Dodis
New York University
Popular Children's Game

• Each child chooses scissors, paper or rock
 - Rock beats Scissors
 - Scissors beat Paper
 - Paper beats Rock

• What do we play?
 - For any strategy there is a better response!

• Solution: play **AT RANDOM**
 - No matter what the opponent does, break even on average!

• Randomization essential here
Randomness

• Crucial in many areas:
 - Approximation algorithms
 - Distributed computing
 - Property testing
 - Counting problems
 - Symmetry breaking
 - Reducing Complexity (sampling, embedding)
 - Game theory
 - Cryptography
 - ...
The Big Picture

1. Reasons for Randomness in Crypto
2. Imperfect Sources of Randomness
3. Cryptography from entropy alone?
 - Does crypto requires extraction?
4. Randomness Extraction
 - Variants: fuzzy, local, interactive,…
5. Leakage-Resilient Cryptography
6. Pseudorandomness
The Big Picture

1. Reasons for Randomness in Crypto
2. Imperfect Sources of Randomness
3. Cryptography from entropy alone?
 - Does crypto requires extraction?
4. Randomness Extraction
 - Variants: fuzzy, local, interactive,…
5. Leakage-Resilient Cryptography
6. Pseudorandomness
Randomness in Crypto

• Unlike many other examples, randomness essential for security!
• Secret keys have to be random
 – If not, everything is easy
• Security against “replay” attacks (e.g., challenge-response, encryption, …)
• Privacy and Anonymity
 – Many examples (stay tuned)
• Unpredictability (e.g., of challenges, fingerprints, …)
Key generation 1

• Toy example: Caesar cipher
 • $\text{Enc(letter)} = \text{letter} + 3 \mod 26$
 - $\text{Enc(RANDOM)} = \text{UDQGRP}$
 - Can’t rely on secrecy of algorithms, only of secret keys (Keirkhoff’s principle)!

• Example 2: shift cipher
 • $\text{Enc}_s(x) = x + s \mod 26$
 - Key is too short, only 26 keys!
 - Keys must have enough entropy to defeat brute force attacks!
Key generation 2

- Example 3: permutation cipher
- \(\text{Enc}_\pi(\text{letter}) = \pi(\text{letter}) \), where \(\pi \) is random permutation
 - \(\text{Enc}_\pi(\text{NOT GOOD}) = \text{RZP BZZQ} \)
 - \# keys = \(26! = 2^{95} \) (large enough)
 - Not good, see that same letter “Z” appeared three times (frequency analysis kills it)
 - Entropy alone is not enough! (more later)
 - Need to have precise goal and argue that your system meets it
Key generation 3

- Example 3: one-time pad
- **Goal**: encrypt n-bit message once and have ciphertext reveal “no information” about the plaintext (e.g., $H(M) = H(M|C)$, for any distribution on M)
 - Even the goal is probabilistic in nature!
- $\text{Enc}_K(m) = m \oplus K$, $\text{Dec}_K(c) = c \oplus K$
 - Satisfies defn, provided K is truly random
 (aside: $|K| = |M|$, bad but best possible 😞)
 - How crucial is this assumption?
Randomness of keys?

• If Eve knows some info about $K \Rightarrow$ translates to the same info about M!
 - E.g., $M_1 = C_1 \oplus K_1$
 - In general, partial info reduces brute force search and most cryptanalysis techniques!

• **Important**: assume can generate keys according to the “distribution we need”
 (which is typically uniformly random in the symmetric key setting)
 - Revisit this later, but assume for now!
Randomness of keys?

• What about “practical” ciphers (DES, AES, RC2, …)?
 - Often believe “any key is good”

• Dangerous
 - Ex: 0^{56}, $0^{28} 1^{28}$, 1^{56}, $1^{28} 0^{28}$ weak for DES
 - Not the design criteria of creators
 - Meaningless formally: any “specific” key is weak since “know” the secret key
 - Need random experiment to even make sense of security!
Randomness of keys?

• **Heuristics:** if K has enough entropy, practical systems based on DES, AES, ... are secure.
 - No formal justification!
 - In fact, I will later give strong evidence that this is very suspect! [DOPS04]

• **Punchline:** current symmetric key systems crucially rely on the randomness of their secret keys!
What about Public Keys?

- **Example**: ElGamal encryption.
- **All we need to know is that need common prime p where discrete log (from p, g and \(y = g^x \mod p \) compute x) is “hard”
- **“Great” choice**: use p of the form \(2^k + 1 \)
 - Recall, order of multiplicative group (p-1) \((z^{p-1} = 1 \) for all z by Fermat’s little theorem)
 - Very fast operations!
- **Insecure**: discrete log is easy!
Attack

- Easy to see: x_k is even iff $y^{2^{k-1}} \mod p = 1$
- More generally x ends with j zeros iff $y^{2^{k-j}} \mod p = 1$
- For $j = 0$ to $k-1$
 - Set $x_{k-j} = 0$ iff $y^{2^{k-j-1}} \mod p = 1$
 - If $x_{k-j} = 1$, change $y := y / g \mod p$
- Output $x_1 \ldots x_k$
Key Generation

- **Moral**: every crypto system (PK or SK) has a well defined hardness assumption (or security proof) involving, among other things, generation of public/secret keys
 - Security might crucially rely on key generation performed exactly as specified by the assumption
 - Most often need uniform random data

- **Discrete Log**: if p is random k-bit prime, g - random generator of \(Z_p \) and \(x \) - random exponent in \{1...p-1\}, then hard to compute \(x \) given \((p, g, y = g^x \mod p) \)
Lessons

- Crypto depends on randomness of keys
 - Even security goals are probabilistic
- Need high-entropy, but not enough
- Most current systems need uniformly random bits (or something derived from them)
- Security might break if the key distribution is not what you expect (more later)
- **Key assumption**: assume have a source of truly random bits - will revisit later
 - separates use of randomness from generation
- What can we do with it???
Reasons for Randomness

• Key Generation ✓
Reasons for Randomness

- Key Generation
- Privacy: masking, blinding, hiding, re-randomizing
Ex. 1: Adding 2 Numbers

- Alice has a, Bob has b
- Chris needs to compute $S = a \oplus b$
- Alice does not want Chris or Bob to learn a
- Bob does not want Chris or Alice to learn b
- Alice: pick random r and send it to Bob
- Alice: Compute $a' = a \oplus r$ and send it to Chris
- Bob: Compute $b' = b \oplus r$ and send it to Chris
- Chris: compute $a' \oplus b' = a \oplus b \oplus (r \oplus r) = a \oplus b$
 - Does not give Chris any info about a, b beside sum
- Alice and Bob also only know random r
Ex. 2: Blind RSA Signature

- Recall RSA: \(n = pq \), where \(p, q \) - primes
- \(\varphi(n) = (p-1)(q-1) \). For any \(z \), \(z^{\varphi(n)} \equiv 1 \mod n \)
- Pick random \(e \) and let \(d = e^{-1} \mod \varphi(n) \)
- \(PK = (n,e) \). \(SK = d \).
- \(\text{Sig}_{SK}(m) = H(m)^d \mod n \),
 - here \(H \) is “good” hash function (not important)
- \(\text{Ver}_{PK}(\sigma,m) \): Check \(\sigma^e \equiv H(m) \mod n \)
 - Indeed, \(\sigma^e = H(m)^{ed} = H(m)^1 = H(m) \mod n \)
- Assume Bob knows \(d \), Alice knows \(m \), and wants to compute \(\text{Sig}(m) \) without telling \(m \) to Bob?
 - “blind” signature, useful for e-cahs, etc. (stay tuned)
Ex. 2: Blind RSA Signature

• Alice (knows \(n, e, m, \text{ not } d\)):
 - Pick random \(r\) and compute \(A = r^e H(m) \mod n\)
 - Send \(A\) to Bob for signing
 - Note, \(A\) is random and independent from \(H(m)\)

• Bob (knows \(d, \tau\) but not \(r, m\)):
 - Compute \(\tau = A^d \mod n\) and send \(\tau\) to Alice
 - Note, \(\tau = A^d = r^{ed} H(m)^d = r H(m)^d = r \sigma \mod n\)

• Alice:
 - Compute \(\sigma = \tau r^{-1} = H(m)^d \mod n\)
Randomness for Privacy

- We will see many other examples: encryption, commitment, zero-knowledge,…
- Perhaps most important use in crypto
- Strongly requires uniform randomness
 - i.e., non-uniform pads, masks, etc. leak partial information
- We will see later that it is very hard (impossible?) to securely realize such applications without perfect randomness
Reasons for Randomness

• Key Generation
• Privacy: masking, blinding, hiding, re-randomizing
• Unpredictability (random challenges)
Unpredictability

• Do not want the attacker to guess some information before it becomes available

Example: identification

• Alice wants to prove she is “Alice” to Bob

• Naturally, Bob should “challenge” Alice with stuff only Alice should know

• If predictable challenges
 - Eve might know what Bob expects
 - Perhaps Eve convinces Alice to identify herself before she would do it to Bob. Then can simply forward Alice’s answer later.
Doing It With Encryption

- Alice has (SK, PK) for an encryption scheme
- **Bob**: chooses random R, lets c = Enc_{PK}(R) and challenges Alice with c
- **Alice**: computes R’=Dec_{SK}(c) and sends R’ to Bob
- **Bob**: accepts if R = R’
- Intuition: only Alice can decrypt
- Clearly, insecure if Eve can predict R
 - just send R to Bob ignoring c!
- Conversely, can show “secure” if (1) Enc is “strong enough” and (2) R is unpredictable:
 - for any R_1...R_k, \Pr_{R}(\exists i \text{ } R = R_i) = \text{tiny}
Doing It With Signatures

- Alice has (SK,PK) for a signature scheme.
- **Bob**: send random R to Alice
- **Alice**: returns $\text{Sig}_{SK}(R)$
- **Bob**: accepts if correct $\text{Ver}_{PK}(\sigma, R) = \text{true}$
- Intuition: only Alice can sign
- Assume Eve convinces Alice to identify herself before she would do it to Bob
 - If R is predictable, Eve can send same R to Alice and learn $\text{Sig}(R)$!
- Conversely, unpredictability (+ good signature) are enough for security
More on Unpredictability

• Does not require true randomness!
 – High entropy is necessary and sufficient!

• As we will see, this makes this use of randomness more realistic than requiring perfect randomness

• Look-ahead questions:
 – can we get perfect randomness from high entropy one? (mixed answer, mainly NO)
 – What about computational unpredictability, where it is only “hard to predict”?
Reasons for Randomness

• Key Generation
• Privacy: masking, blinding, hiding, re-randomizing
• Unpredictability (random challenges)
• Freshness (non-repeatability, nonces)
Freshness

• Sometimes need a value which is guaranteed not to happen before
 - Do not care about unpredictability
 - Just do not want to reuse an old one
• Solution: keep a counter and use 1, 2, ...
 - Problem: requires state (predictability OK !)
• Stateless solution? Yes, pick at random
 - If pick from \{0, 1\}^K at most q times, then
 \[\Pr[\text{repeat some value}] < q^2 2^{-K} \] (birthday bound)
 - High Entropy also suffices ! (~ q^2 2^{-H(X)})
Nonces and Their Applications

• Nonce = a value that “never” repeats

• Why do we care?
 1. Freshness “in time” (e.g., key exchange)
 2. Freshness of input to a block cipher or a pseudorandom function (describe later)

• Applications: key establishment (1, now), symmetric encryption, authentication (2, later), …
Example: Key Establishment

• Say, Alice and Bob know their public keys and want to establish a session key

• Simple solution: A picks K at random and sends $c = E_B(K, "Alice"), \sigma = \text{Sig}_A(c, "Bob")$

• Problem: after K is gone, Eve might learn it and reuse (c, σ), establishing a fake key with Bob
 - Replay attack!

• Solution: use a nonce R
 - B sends $(R, \text{Sig}_B(R))$
 - A replies with $c = E_B(K, "Alice"), \sigma = \text{Sig}_A(c, R, "Bob")$
 - Ensures Eve can’t use old R with Bob
 - Privacy of R not important, as long as B doesn’t reuse
Reasons for Randomness

• Key Generation
• Privacy: masking, blinding, hiding, re-randomizing
• Unpredictability (random challenges)
• Freshness (non-repeatability, nonces)
• Noise (confusing attacker)
 - Add noise to data to maintain “global features”, but hide individual information
 - Mainly used for “database sanitization”
 - Recent research area (differential privacy)
Reasons for Randomness

• Key Generation
• Privacy: masking, blinding, hiding, re-randomizing
• Unpredictability (random challenges)
• Freshness (non-repeatability, nonces)
• Noise (confusing attacker)
• Efficiency! (e.g., primality testing)
 - Could be that randomness is not inherently needed, but can speed things up!
Primality testing

• Want to know if p is prime?
 - Only recently know how to do “moderately efficiently” (K6 best??) & deterministically
• Still, much faster to do probabilistically!
• Recall, if p-prime, $z^{p-1} = 1 \mod p$
• Which z to test?
 - all z: exponential time 😞
 - $z = 2$: not bad, but many counter-examples
 - random z: “almost” works, minor fix needed
 - get famous Miller-Rabin test
Batch Verification of RSA

• Assume need to verify many (t) RSA sigs \((m_i, \sigma_i)\), where \(\sigma_i^e = H(m_i) \mod n\)
 - Naive solution: \(t\) exponentiations

• Idea: for any subset \(I\) of \(\{1...t\}\), let
 - \(M_I = \prod_{i \in I} H(m_i) \mod n, \quad \sigma_I = \prod_{i \in I} \sigma_i \mod n\)
 - Then \(\sigma_I^e = M_I \mod n\), for any \(I\)

• Pick random \(I\) and check above equation (1.5 exp)
 - If there exists a bad signature, detect w/pr \(\frac{1}{2}\)!

• Now repeat several (say 80) times:
 - for large \(t\) benefit outperforms the cost!
Reasons for Randomness

- Key Generation
- Privacy: masking, blinding, hiding, re-randomizing
- Unpredictability (random challenges)
- Freshness (non-repeatability, nonces)
- Noise (confusing attacker)
- Efficiency! (e.g., primality testing)
- Probabilistically Checkable Proofs
 - Includes zero-knowledge proofs...
Proofs

• Prover P wants to prove to Verifier V some statement S is true

• **Witness of S:** string w s.t. V can check S is true using w

 - Ex.: $S = \text{“Second bit of } \text{Dlog}(y) \text{ is 0”}$, then $w = \text{Dlog}(y)$. Test by seeing $w_2 = 0$ and $g^w = y$

• **NP** = class of problems where each true statement has a witness, and false statements do not have any witnesses

 - Note, witness might be hard to find, but always easy to check! (big question: $P \neq \text{NP}$?)
Some Questions

- P can always convince V by sending w
- Question 1 (orthogonal to us, but nice!): If P is unbounded, can we convince poly-time V in problems outside of NP?
 - Yes, can do anything in polynomial space!
 - Randomness essential (else “stuck” with NP)
 - Unpredictability enough [DOPS04]
 - Won’t give example (although fascinating!), since in practice no unbounded P
Short Proof?

- **Questions 2**: if V is OK to be “fooled” with tiny probability, can we send significantly shorter string than w?
- Batch verifier for RSA: could be viewed as P proving “I know all t signatures” without sending all of them!
- Don’t care about leaking witnesses (yet!), only efficiency
Short Proof?

• Remarkable (theoretical result): any NP statement can be proven with “polylog” communication (under some assumptions)
 – Again, randomness essential here!

• In fact, P can write a moderately long (poly(n)-bit) “special proof” w’ s.t. V can check correctness of w’ w.r.t. S using:
 – Using $O(\log n)$ random bits
 – Reading CONSTANT number of bits of w’
 – Having 99.9% assurance he was not fooled

• Celebrated result, but very impractical 😞
Hiding the Witness?

- **Questions 3**: (most crypto related) Can P prove S to V s.t. (1) V is convinced; yet (2) V does not learn the witness w?
- Useful for a variety of different reasons
- **Ex. 1**: identification schemes
 - P proves knows SK corresponding to PK
 - Don’t send SK as then V can impersonate P
 - Still leaked partial knowledge (e.g. some signatures V can’t compute), just not enough to actively impersonate V
Signature or Encryption?

- Sig certainly leaks signature of new values Sig(R), which V can’t get
- Enc actually doesn’t leak that much...
- V expects to get Dec(c) = R, just wants to get convinced P can produce it too!
- If V “knew” P was going to pass, could have simulate the entire proof!
 - Zero-knowledge proof, nothing is leaked!
 - Well... almost. What if V asks Dec(“bad c”)??
Zero-Knowledge proofs

• Roughly: whatever V learned from talking to P (beyond the validity of assertion), V can “simulate” on its own!

• ZK Proofs: concentrate on statements which could be true or false (decision)
 - Ex.: \(\text{msb}(\text{dlog}(y)^2) = 0 \)

• ZK Proofs of Knowledge: prove that P knows something he claims, without leaking any info about it!

• Arguments: P is efficient using the witness w
Big Result

- Under mild assumption (OWF exist), any NP statement has a ZK Proof and ZKPoK
 - Very important result
 - Generic proof is inefficient, but efficient solutions exist for many useful languages!
 - Generic proof + all protocols use randomness in a totally crucial way (e.g., for challenges, blinding and commitments!)

Yevgeniy Dodis, New York University. Tutorial on Randomness.
Ex: ZKPoK of Discrete Log

• Common input $y = g^x$
• P proves knowledge of x
 - P to V: pick random $r \in \{1..p-1\}$ and send “commitment” $R = g^r$
 - V to P: send random $c \in \{1..p-1\}$
 - P to V: send $s = r + cx \mod (p-1)$
 - V: check that $g^s = R \cdot y^c$
• Very useful in many-many apps!
Security?

- Why PoK?
 - if P responds to \(c \neq c' \) with same \(R \), then
 from \((s, s', c, c') \) can solve for \(x = (s-s')/(c-c') \)
 - So V is "really convinced" P knows \(x \)!

- Why (honest verifier) ZK?
 - V can "fake" conversation with P, for any \(c \)
 - Recall, only need \((R,c,s) \) s.t. \(g^s = R \cdot y^c \mod p \)
 - Pick random \(s \) and set \(R = g^s / y^c \mod p \)
 - Easy to see same distribution on \((R,c,s) \)

- Secure as "real" P commits to \(R \) before \(c \)
Randomness in ZK Proofs?

• **Essential for the verifier!**
 - Otherwise P can predict all the responses and really amounts to normal “NP”-proof, which is not ZK
 - Is unpredictable randomness enough? (later)

• For many naturally occurring problems essential for the prover as well to achieve ZK (e.g. “public-coin proofs” like the DL example)
Reasons for Randomness

• Key Generation
• Privacy: masking, blinding, hiding, re-randomizing
• Unpredictability (random challenges)
• Freshness (non-repeatability, nonces)
• Noise (confusing attacker)
• Efficiency! (e.g., primality testing)
• Probabilistically Checkable Proofs
• “Pseudorandomness” & “Extraction” !!!
Pseudorandomness

- R is **pseudorandom** (given Y) if hard to distinguish R from a truly uniform, random string (even given Y)
- **Information-theoretic**: R is random
- **Computational**: even though R is certainly not random, it “looks so” to a computationally bonded attacker
- **Decisional Diffie-Hellman Assumption**: for random \(x, y, z\) have
 \[
 < g, g^x, g^y, g^{xy} > \approx < g, g^x, g^y, g^z >
 \]
DDH and its Applications

• False in standard \mathbb{Z}_p!
 - $\text{lsb}(g^{xy}) = 0$ w/pr $\frac{3}{4}$, $\text{lsb}(g^z) = 0$ w/pr $\frac{1}{2}$
 - Seems true in prime order subgroup of \mathbb{Z}_p
 - Despite the fact that g^{xy} is uniquely determined by g, g^x, g^y
 - Seems important that x, y, z random
 - Much stronger assumption than DL (or CDH)!

• Many applications: DH key exchange, ElGamal Encryption, Cramer-Shoup encryption, algebraic “PRF” (see later),...
DH Key Exchange from DDH

- Alice and Bob do not share anything. Want to get a key by public discussion, s.t. secure against eavesdropper Eve
- Alice: $x \rightarrow \text{random}, A = g^x$, send A to Bob
- Bob: $y \rightarrow \text{random}, B = g^y$, send B to Alice
- Alice: compute $K = B^x = g^{xy}$
- Bob: compute $K = A^y = g^{xy}$
- Eve: g^{xy} looks like g^z given g, g^x, g^y
Pseudorandomness

- True randomness is expensive, hard to get, store, generate
- PR approach: start with small amount of true randomness & get more randomness which is equally good for applications!
 - DDH: \(g, x, y \Rightarrow g, g^x, g^y, g^{xy} \) (from 3k \(\rightarrow \) 4k)
- Does not eliminate true randomness
- Reduces its size at the expense of (strong?) computational assumptions
Relation to Extractors

• More later, but extractors start with imperfect randomness, and try to extract nearly perfect one
 - Typically extract statistically random stuff (no computational assumptions)
 - Sometimes do not use any additional true randomness (but very limited use)
 - Sometimes use a “little” true randomness, but extract “much more” using the imperfect source “instead of” computational assumption
Main PR Primitives

- **PR Generator (PRG)**
 - Length increasing function G (say $k \rightarrow n$) s.t.
 - $G(U_k) \approx U_n$, where U_t - uniform on t bits
 - DDH more or less gives (a slow) PRG

- **PR Function (PRF) family**
 - $F = \{f_s \mid s \in \{0,1\}^k\}$ indexed by “short” key s
 - For random s, $f_s \approx$ truly random function
 (i.e., one with random output for every input)
 - Say, $f_s : \{0,1\}^k \rightarrow \{0,1\}$. Compress $2^k \rightarrow k$ bits!

- **PR Permutation (PRP) family**
 - $P = \{(\pi_s, \pi_s^{-1}) \mid s \in \{0,1\}^k\}$ - each π_s invertible!
 - For random s, $(\pi_s, \pi_s^{-1}) \approx$ truly random (g,g^{-1})
Applications of PRGs

• Beat Shannon bound on key length for one-time encryption:
 - \(\text{Enc}_s(M) = M \oplus G(s) \), here \(|M| >> |s|\)

• Stream Ciphers: “stateful” PRGs
 \[G(s_t) \rightarrow R_t, s_{t+1} \]
 - Give stateful sequence of OTPs

• Hybrid public-key encryption:
 \[\text{Enc}_{PK}'(M) = \langle \text{Enc}_{PK}(s), m \oplus G(s) \rangle \]
 - Reduces PKE of long messages to short
Applications of PRFs/PRPs

• **PRFs**
 - Much easier stateful cipher: $f_s(1), \ldots f_s(t), \ldots$
 - Message authentication codes
 - Modes of operations for encryption (e.g., OFB, CFB, counter, XOR)
 - Repeated generation of same randomness!
 - Huge number of other applications
 - Essentially, $f_s(\text{nonce})$ is a new OTP!

• **PRPs**
 - PRP is a length-preserving PRF, so many of the above applications work here as well
 - Plus unique ones where inverse needed (CBC)
Example: Encryption

• Idea 1: use PRP, $Enc_s(m) = \pi_s(m)$
 - Problem: $Enc(m)$ always the same!
 - Cannot encrypt repeated values from small space ($\{sell, buy\}$)

• Moral: repeated encryption of the same message should be different
 - Either update secret key (stateful 😞)
 - Or must be probabilistic
 - Latter only option in the public key setting!
Example: Encryption

- In symmetric-key setting, nonce suffices
 - $\text{Enc}(m) = f_s(\text{nonce}) \oplus M$
 - many ways to extend to multiple blocks, get OFB, CFB, XOR, counter

- With PRPs, can also use CBC
 - $\text{Enc}(m) = \pi_s(\text{nonce} \oplus M)$

- CBC not secure with counter, need unpredictable nonce (like random!)

- Punchline: “convenient” encryption must use randomness both for keys and per every invocation!
Relation to Unpredictability

• X is unpredictable (given Y) if hard to compute X (given Y)
 - Only makes sense in “probabilistic sense”

• Could be information-theoretic
 - Random challenge R (trivial)
 - Does not inherently require true randomness
 - High entropy necessary and sufficient

• Could be computational
 - Ex.: discrete log assumption
 - Given (p, g, gx mod p), hard to compute x, even though x is “mathematically unique”
Aside: Comparison

• Although sampling unpredictable value (i.e., challenge) does not require true randomness, most computational unpredictability assumptions need it!
 - Ex: for discrete log, need to perfectly sample p, g, x to claim x is unpredictable
 - Can state for imperfect p, g, x, but dangerous
• In general, many differences between i.t. and computational unpredictability (stay tuned)
Back to Unpredictability

- Backbone of (computational) crypto
- Most natural assumptions (factoring, discrete log, RSA) says something is unpredictable given other info
 - Would like to avoid assuming PR if we can!
- Especially useful (i.e., sufficient) for authentication applications
 - Secure signature: \(\text{sig}(m) \) is unpredictable even given \(\text{sig}(m_1)\ldots \text{sig}(m_k) \) for any \(m_i \neq m \)
Relation to Privacy

• Theoretically OK to leak partial info, as long as “all of” X is still hard
 - Ex: lsb(x) easy from $g^x \mod p$, OK to leak signature of “old/unimportant” messages

• Compare to privacy apps, where cannot leak any partial info

• **Question**: is having unpredictability enough for achieving privacy (i.e., pseudorandomness)?
 - Depends on whether can sample uniform bits!
Relation to Privacy

• Beautiful BIG result [Goldreich-Levin]:
 - Assume X is unpredictable to attacker
 - Assume r is truly random but known
 - Then $X \cdot r \pmod{2}$ looks random to attacker:
 given r, hard to guess $X \cdot r$ w/pr. > 51%!

• Generically converts UP to PR
 - Huge theoretical result (still not optimal!)

• Example: Alice and Bob share UP value X and want to share a PR bit
 - Alice picks random r and sends it to Bob in “the clear”. Both agree on $b = X \cdot r \pmod{2}$
Relation to Privacy

• Can view as a “computational extractor”!
• However, assumes true randomness r
• A lot of my work: what if cannot sample r?
 - E.g., only have unpredictable r’s...
• Is UP still enough? (my work: likely NO)
• To what extent can we base cryptography on imperfect randomness??
• Exciting, rapidly developing area!
 - starting point for this course...
Reasons for Randomness

- Key Generation
- Privacy: masking, blinding, hiding, re-randomizing
- Unpredictability (random challenges)
- Freshness (non-repeatability, nonces)
- Noise (confusing attacker)
- Efficiency! (e.g., primality testing)
- Probabilistically Checkable Proofs
- “Pseudo-randomness” & “Extraction” !!!
Main Applications

- Encryption
- Message authentication, fingerprinting
- Secret sharing, AONTs
- Commitment Schemes
- Key Exchange
- Identification Schemes
- Zero-Knowledge Proofs
- Blinding, Anonymity, Privacy, ...
- “All together” (sample e-cash application)
E-cash

Simple payment protocol:
• Sign a document transferring money from your account to another account
• This document goes to your bank
• The bank verifies that this is not a copy of a previous check
• The bank checks your balance
• The bank transfers the sum

Problems:
• Requires online access to the bank (to prevent reusage)
• Expensive.
• The transaction is traceable (namely, the bank knows about the transaction between you and Alice).
First attempt

Withdrawal
• User gets bank signature on \{I am a $100 bill, #1234\}
• Bank deducts $100 from user’s account

Payment
• User gives the signature to a merchant
• Merchant verifies the signature, and checks online with the bank to verify that this is the first time that it is used.

Problems:
• As before, online access to the bank, and lack of anonymity.

Advantage:
• The bank doesn’t have to check online whether there is money in the user’s account.
Anonymous cash via blind signatures

- The bank signs the bill without seeing it (e.g. like signing on a carbon paper)

- Can use RSA Blind signatures did earlier!

- RSA signature: $H(m)^{1/e} \mod n$

- Blind RSA signature:
 - Alice: sends Bob $(r^e H(m)) \mod n$, where r is a random
 - Bob: computes $(r^e H(m))^{1/e} = r \cdot H(m)^{1/e} \mod n$, and sends to Alice.
 - Alice divides by r and computes $\text{Sig}(m) = H(m)^{1/e} \mod n$

- Problem: Alice can get Bob to sign anything, as Bob does not know what he is signing.
Enabling the bank to verify the signed value

- Use “cut and choose” protocol
- Suppose Alice wants to sign a $20 bill.
 - She prepares 100 different $20 bills for blind signature, and sends them to the Bank (Bob).
 - The bank chooses 99 of them at random and asks Alice unblind them (divide by the corresponding r values).
 - It verifies that they are all $20 bills.
 - The bank blindly signs the remaining bill and gives it to Alice.
- If Alice tries to cheat she is caught with probability 99/100.
- 100 can be replaced by any parameter k.
- We would have preferred an exponentially small cheating probability.
Exponentially small cheating probability

- Define that a $20 bill is valid if it is the e-th root of the multiplication of 50 values of the form $H(x)$, (H is one-way) and the owner of the bill can present all 50 x values.

- The withdrawal protocol:
 - Alice sends to the Bank $z_1, z_2, \ldots, z_{100}$ (where $z_i = r_i^e \cdot H(x_i)$).
 - Bank asks Alice to reveal random $\frac{1}{2}$ of the values $z_i = r_i^e \cdot H(x_i)$.
 - Bank verifies them and extracts the e-th root of the multiplication of all the other 50 values.

- Payment: Alice sends the signed bill and reveals the 50 preimage values. The merchant sends them to the bank which verifies that they haven’t been used before.

- Alice can only cheat if she guesses the 50 locations in which she will be asked to unblind the z_i’s, which happens with probability $\sim 2^{-100}$.
Online vs. offline digital cash

• We solved the anonymity problem, while verifying that Alice can only get signatures on bills of the right value

• The bills can still be duplicated
 – Merchants must check with the bank whenever they get a new bill, to verify that it wasn’t used before.

• A new idea:
 – During the payment protocol the user is forced to encode a random identity string (RIS) into the bill
 – If the bill is used twice, the RIS reveals the user’s identity and she loses her anonymity.
Offline digital cash

Withdrawal protocol:
- Alice prepares 100 bills of the form
 - \{I am a $20 bill, #1234, y_1, y_1', y_2, y_2', \ldots, y_k, y_k'\}
 - S.t. for all i, y_i = H(x_i), y_i' = H(x_i'), x_i \oplus x_i' = Alice's id, where H() is a "good" hash function and x_i random
- Alice blinds these bills and sends to the bank.
- The bank asks her to unblind 99 bills and show their x_i and x_i' values, and checks their validity. (Alternatively, as in the previous example, Alice can do a check which fails with only an exponential probability.)
- The bank signs the remaining blinded bill.
Offline digital cash

Payment protocol:

- Alice gives a signed bill to the vendor
 - \{I am a $20 bill, #1234, y_1, y_1', y_2, y_2', ..., y_k, y_k'\}
- The vendor verifies the signature, and if valid sends to Alice a random bit string \(b = b_1 b_2 \ldots b_k\) of length \(k\).
- For all \(i\), if \(b_i = 0\) Alice returns \(x_i\), otherwise (\(b_i = 1\)) she returns \(x_i'\)
- The vendor checks that \(y_i = H(x_i)\) or \(y_i' = H(x_i')\) (depending on \(b_i\)). If this check is successful it accepts the bill.
- Note that Alice’s identity is kept secret!
- Also, the merchant does not need to contact the bank during the payment protocol.
Offline digital cash

• The merchant must deposit the bill in the bank. It cannot use the bill to pay someone else.
 - Because it can't answer challenges b^* different from the challenge b it sent to Alice.

• How can the bank detect double spenders?
 - Suppose two merchants M and M^* receive the same bill
 - With very high probability, they send different queries b, b^*
 - Suppose $b_i = 0, b_i^* = 1$. Then M receives x_i and M^* receives x_i'.
 - When they deposit the bills the bank receives both x_i and x_i', and can compute $x_i \oplus x_i' = \text{Alice's id.}$
Usage of Randomness

Several very different uses:

1. To generate signing/verification key (SK and PK)
2. To blind RSA signatures (random r)
3. To perform cut-and-choose proofs (random 1/2 blindings to open)
4. To randomly open 1-of-2 values of $x_i(b)$
5. To prevent double-spending (split randomly $x_i \oplus x_i'$)