CSCI-GA.1144-001

PAC II

Lecture 8: Algorithms II

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com
A Quick Refresh

• We assume we execute our algorithm on RAM.
 – In RAM, instructions are executed one after the other, with no concurrency.
 – RAM model contains instructions available in common computers.
 – Each instruction takes a constant amount of time.
 – We do not attempt to model memory hierarchy.

• We care more about the worst-case scenario.
Sorting

• **Input**: sequence of n numbers
 \[<a_1, a_2, \ldots, a_n> \]

• **Output**: a permutation of the input sequence $<b_1, b_2, \ldots, b_n>$ such that:
 \[b_1 \leq b_2 \leq \ldots \leq b_n \]
Insertion Sort

- Adding a new element to a sorted list will keep the list sorted if the element is inserted in the correct place.

- A single element list is sorted.

- Inserting a second element in the proper place keeps the list sorted.

- This is repeated until all the elements have been inserted into the sorted part of the list.
Insertion Sort

INSERTION-SORT (A)
1 for j = 2 to length[A]
2 key = A[j]
3 // Insert A[j] into the sorted sequence A[1...j-1]
4 i = j - 1
5 while i > 0 and A[i] > key
6 A[i+1] = A [i]
7 i = 1 - 1
8 A[i+1] = key

Source: “Introduction to Algorithms” 3rd Edition
Insertion Sort

Sorted already

Not yet processed
Algorithm Analysis

• In general, the time taken by an algorithm grows with the size of the input.
• So, it is traditional to describe the running time of a program as a function of the size of its input.
• The running time of an algorithm on a particular input is the number of primitive operations executed.
• We care about the worst-case scenario.
Important note before we start

When a **for** or **while** loop exits in the usual way (i.e., due to the test in the loop header), the test is executed one time more than the loop body.
Analyzing Insertion Sort

INSERTION-SORT (A)

1. for j = 2 to length[A] → \[\text{cost: } c_1, \text{times: } n\]
2. key = A[j] → \[\text{cost: } c_2, \text{times: } n-1\]
3. // Insert A[j] into the sorted sequence A[1...j-1] → \[\text{cost: } c_3 = 0, \text{times: } n-1\]
4. i = j - 1 → \[\text{cost: } c_4, \text{times: } n-1\]
5. while i > 0 and A[i] > key → \[\text{cost: } C_5, \text{times: } \sum_{j=2}^{n} t_j\]
6. A[i+1] = A[i] → \[\text{cost: } C_6, \text{times: } \sum_{j=2}^{n} (t_j - 1)\]
7. i = 1 - 1 → \[\text{cost: } C_7, \text{times: } \sum_{j=2}^{n} (t_j - 1)\]
8. A[i+1] = key → \[\text{cost: } C_8, \text{times: } n-1\]

\(t_j\) is the number of times the while loop test in step 5 is executed for that value of j.

Source: “Introduction to Algorithms” 3\(^{rd}\) Edition
Analyzing Insertion Sort

Best case:
A is sorted
$t_j = 1$ in step 5 for all j

Worst case:
A is reverse sorted
$t_j = j$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

$t_j = 1$ in step 5 for all j

$T(n) = an + b$

$T(n) = an^2 + bn + n$

Source: “Introduction to Algorithms” 3rd Edition
How to Design An Algorithm

• Incremental approach: similar to insertion sort

• Divide-and-conquer approach:
 – Divide: break the problem into similar subproblems similar to the original problem but smaller in size
 – Conquer: solve the subproblems recursively
 – Combine: combine the solutions to create the solution of the original problem
Merge Sort

Sorts the elements of subarray A[p..r].
Initially: p = 1 and r = length[A]

\[
\text{MERGE-SORT}(A, p, r) \\
1 \ \textbf{if} \ p < r \\
2 \ \quad q = \left\lfloor (p + r)/2 \right\rfloor \\
3 \ \quad \text{MERGE-SORT}(A, p, q) \\
4 \ \quad \text{MERGE-SORT}(A, q + 1, r) \\
5 \ \quad \text{MERGE}(A, p, q, r)
\]
Merge Sort

```
MERGE(A, p, q, r)
1  n_1 = q - p + 1
2  n_2 = r - q
3  let L[1..n_1 + 1] and R[1..n_2 + 1] be new arrays
4  for i = 1 to n_1
5      L[i] = A[p + i - 1]
6  for j = 1 to n_2
7      R[j] = A[q + j]
8  L[n_1 + 1] = \infty
9  R[n_2 + 1] = \infty
10  i = 1
11  j = 1
12  for k = p to r
13      if L[i] \leq R[j]
14         A[k] = L[i]
15         i = i + 1
16      else A[k] = R[j]
17         j = j + 1
```
Execution Example

• Partition
Execution Example (cont.)

• Recursive call, partition
Execution Example (cont.)

- Recursive call, partition

```
7 2 9 4 3 8 6 1
```

```
7 2 | 9 4
```

```
7 | 2
```

```
7 2 9 4
```

```
3 8 6 1
```

```
1 2 3 4 6 7 8 9
```
Execution Example (cont.)

- Recursive call, base case
Execution Example (cont.)

- Recursive call, base case
Execution Example (cont.)

- Merge

```
| 7 2 9 4 | 3 8 6 1 |
```

```
| 7 2 9 4 |
```

```
| 7 2 → 2 7 |
```

```
| 7 → 7 | 2 → 2 |
```

```
| 3 8 6 1 |
```

```
| 1 3 8 6 |
```

```
| 1 6 |
```

Execution Example (cont.)

- Recursive call, ..., base case, merge
Execution Example (cont.)

• **Merge**

```
7 2 9 4 → 3 8 6 1
```

```
7 2 9 4 → 2 4 7 9
```

```
7 2 → 2 7
9 4 → 4 9
```

```
7 → 7
2 → 2
9 → 6
4 → 8
```

```
```
Execution Example (cont.)

- Recursive call, ..., merge, merge

```
7 2 9 4  |  3 8 6 1

7 2  |  9 4  →  2 4 7 9
     |                  
7  |  2  →  2 7
    |      
7  →  7

9 4  |  4 9

9  →  9
4  →  4

3 8  →  3 8

3  →  3
8  →  8

6 1  →  1 6

6  →  6
1  →  1
```
Execution Example (cont.)

• Merge

7 2 9 4 | 3 8 6 1 → 1 2 3 4 6 7 8 9

7 2 | 9 4 → 2 4 7 9

3 8 6 1 → 1 3 6 8

7 | 2 → 2 7

9 4 → 4 9

3 8 → 3 8

6 1 → 1 6

7 → 7

2 → 2

9 → 9

4 → 4

3 → 3

8 → 8

6 → 6

1 → 1
Analyzing Merge Sort

\[T(n) = \text{divide work} + \text{conquer work} + \text{combine work} \]

- Calculate the middle of the array
- Recursively solve 2 subproblems each of size \(n/2 \)
- Combine the elements
Analyzing Merge Sort

- $T(n) = \text{divide work} + \text{conquer work} + \text{combine work}$

 $= D(n) + 2T(n/2) + C(n)$

 $= c + 2T(n/2) + cn$
Analyzing Merge Sort

- \(T(n) = \text{divide work} + \text{conquer work} + \text{combine work} \)

 \[
 = D(n) + 2T(n/2) + C(n) \\
 = c + 2T(n/2) + cn
 \]

Source: “Introduction to Algorithms” 3rd Edition

- Total for conquer: \(\sum cn \lg n \)
- \(T(n) = cn \lg n + cn \)
Bubble Sort

• If we compare pairs of adjacent elements and none are out of order, the list is sorted

• If any are out of order, we must swap them to get an ordered list

• Bubble sort will make passes though the list swapping any adjacent elements that are out of order
Bubble Sort

- After the first pass, we know that the largest element must be in the correct place.

- After the second pass, we know that the second largest element must be in the correct place.

- Because of this, we can shorten each successive pass of the comparison loop.
Bubble Sort Example
Bubble Sort Algorithm

numberOfPairs = N
swappedElements = true

while (swappedElements) do
 numberOfPairs = numberOfPairs - 1
 swappedElements = false
 for i = 1 to numberOfPairs do
 if (A[i] > A[i + 1]) then
 Swap(A[i], A[i + 1])
 swappedElements = true
 end if
 end for
end while
Best-Case Analysis

• If the elements start in sorted order, the *for* loop will compare the adjacent pairs but not make any changes

• So the `swappedElements` variable will still be false and the *while* loop is only done once

• There are $N-1$ comparisons in the best case
Worst-Case Analysis

• In the worst case the while loop must be done as many times as possible. This happens when the data set is in the reverse order.

• Each pass of the for loop must make at least one swap of the elements

• The number of comparisons will be:

\[W(N) = \sum_{i=1}^{N-1} (N - i) = \sum_{k=N-1}^{1} k = \sum_{i=1}^{N-1} i = \frac{(N - 1) \times N}{2} = \mathcal{O}(N^2) \]
Quicksort Algorithm

• Another divide-and-conquer algorithm
• Quicksort is usually $O(n \log n)$ but in the worst case slows to $O(n^2)$

Given an array of n elements (e.g., integers):
• If array only contains one element, return
• Else
 – pick one element to use as *pivot*.
 – Partition elements into two sub-arrays:
 • Elements less than or equal to pivot
 • Elements greater than pivot
 – Quicksort two sub-arrays
 – Return results
Quicksort

- **Divide step:**
 - Pick any element (*pivot*) \(v \) in \(S \)
 - Partition \(S - \{v\} \) into two disjoint groups
 \[
 S_1 = \{ x \in S - \{v\} \mid x \leq v \} \\
 S_2 = \{ x \in S - \{v\} \mid x \geq v \}
 \]

- **Conquer step:** recursively sort \(S_1 \) and \(S_2 \)

- **Combine step:** the sorted \(S_1 \) (by the time returned from recursion), followed by \(v \), followed by the sorted \(S_2 \) (i.e., nothing extra needs to be done)
Example
Pseudo-code

QUICKSORT(A, p, r)
1. **if** $p < r$
2. \hspace{1em} $q = \text{PARTITION}(A, p, r)$
3. \hspace{1em} QUICKSORT(A, p, $q - 1$)
4. \hspace{1em} QUICKSORT(A, $q + 1$, r)

PARTITION(A, p, r)
1. $x = A[r]$
2. $i = p - 1$
3. **for** $j = p$ **to** $r - 1$
4. \hspace{1em} **if** $A[j] \leq x$
5. \hspace{2em} $i = i + 1$
6. \hspace{1em} exchange $A[i]$ with $A[j]$
7. exchange $A[i + 1]$ with $A[r]$
8. **return** $i + 1$
More Sorting Algorithms

- Shell sort
- Heap sort
- Radix sort
- Counting sort
- Bucket sort
- ...

Now that we have a **sorted** array, what is the most efficient way to search an element in it?
Binary Search

- Binary search. Given value and sorted array \(a[] \), find index \(i \) such that \(a[i] = \text{value} \), or report that no such index exists.

- Ex. Binary search for 33.
Binary Search
Efficiency of binary search

• If n represents the number of names, the maximum number of searches x necessary to find a name is the smallest integer that satisfies the inequality $2^x > n$.

\[
2^x > n \\
\log (2^x) > \log n \\
x \log 2 > \log n
\]

The maximum number of searches is the smallest integer greater than $\log n / \log 2$.

\[
\log (2^x) > \log n \\
x \log 2 > \log n
\]
Efficiency of binary search

With the incredible speed of today’s computers, a binary search becomes necessary only when the number of elements is large.

<table>
<thead>
<tr>
<th># of elements</th>
<th>Maximum sequential searches necessary</th>
<th>Maximum binary searches necessary</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>7</td>
</tr>
<tr>
<td>1,000</td>
<td>1,000</td>
<td>10</td>
</tr>
<tr>
<td>5,000</td>
<td>5,000</td>
<td>13</td>
</tr>
<tr>
<td>10,000</td>
<td>10,000</td>
<td>14</td>
</tr>
<tr>
<td>50,000</td>
<td>50,000</td>
<td>16</td>
</tr>
<tr>
<td>100,000</td>
<td>100,000</td>
<td>17</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1,000,000</td>
<td>20</td>
</tr>
<tr>
<td>10,000,000</td>
<td>10,000,000</td>
<td>24</td>
</tr>
</tbody>
</table>
Don’t you think that binary search is related to trees?
Tree Example:
Linux File Structure
Another Tree Example: Compiler Parse Tree

Parse tree for:
\[x=1 \]
\[y=2 \]
\[3 \times (x+y) \]
So ... What is a tree?

• A tree is a **finite set of one or more** nodes such that:
 • There is a specially designated node called the **root**.
 • The remaining nodes are partitioned into \(n \geq 0 \) disjoint sets \(T_1, \ldots, T_n \), where each of these sets is a tree.
• We call \(T_1, \ldots, T_n \) the **subtrees** of the root.
Some Definitions

- The **degree of a node** is the number of subtrees of the node.
- The node with **degree 0** is a leaf or terminal node.
- A node that has subtrees is the **parent** of the roots of the subtrees.
- The roots of these subtrees are the **children** of the node.
- Children of the same parent are **siblings**.
- The **ancestors** of a node are all the nodes along the path from the root to the node.
- The **level or depth** of a node \(n \) is the length of the unique path from the root to \(n \).
A Tree Node

• Every tree node:
 – object - useful information
 – children - pointers to its children nodes
Left Child - Right Sibling
Example: Tree Implementation

typedef struct tnode {
 int key;
 struct tnode* lchild;
 struct tnode* sibling;
} *ptnode;

- Create a tree with three nodes (one root & two children)
- Insert a new node (in tree with root R, as a new child at level L)
- Delete a node (in tree with root R, the first child at level L)
Binary Trees

• A special class of trees: max degree for each node is 2

• Recursive definition: A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called the left subtree and the right subtree.
Example: Is this a binary tree?
Example of Binary Trees

Skewed Binary Tree

Complete Binary Tree
Maximum Number of Nodes in BT

- The maximum number of nodes on level \(i \) of a binary tree is \(2^{i-1} \), \(i \geq 1 \) (assuming root is at level 1)
- The maximum number of nodes in a binary tree of depth \(k \) is \(2^{k-1} \), \(k \geq 1 \).
Full BT vs. Complete BT

- A full binary tree of depth k is a binary tree of depth k having $2^k - 1$ nodes, $k \geq 0$ (root is at depth 1).
- A binary tree with n nodes and depth k is complete iff its nodes correspond to the nodes numbered from 1 to n in the full binary tree of depth k.

```
A  
 B   C
 D   E   F   G
 H   I

Complete binary tree
```

```
A  
 B   C
 D   E
 H   I   J   K
 L   M   N   O

Full binary tree of depth 4
```
Binary Tree Representations: Array

• If a complete binary tree with \(n \) nodes (depth = \(\log n + 1 \)) is represented sequentially, then for any node with index \(i \), \(1 \leq i \leq n \), we have:
 • parent\((i)\) is at \(i/2 \) if \(i!=1 \). If \(i=1 \), \(i \) is at the root and has no parent.
 • leftChild\((i)\) is at \(2i \) if \(2i\leq n \). If \(2i> n \), then \(i \) has no left child.
 • rightChild\((i)\) is at \(2i+1 \) if \(2i +1 \leq n \). If \(2i +1 > n \), then \(i \) has no right child.
Array presentation (aka Sequential presentation)

(1) waste space
(2) insertion/deletion problem
Tree Presentation: Linked Representation

typedef struct tnode *ptnode;
typedef struct tnode {
 int data;
 ptnode left, right;
};
Binary Tree Traversals

- There are six possible combinations of traversal
 - lRr, lrR, Rlr, Rrl, rRl, rlR
- Adopt convention that we traverse left before right, only 3 traversals remain
 - lRr, lrR, Rlr
 - inorder, postorder, preorder
Example: Arithmetic Expression Using BT

Infix Expression:
\[A / B * C * D + E \]

Preorder Traversal:
\[+ * * / A B C D E \]

Prefix Expression:
\[+ * * / A B C D E \]

Postorder Traversal:
\[A B / C * D * E + \]

Postfix Expression:
\[A B / C * D * E + \]
void inorder(ptnode ptr)
/* inorder tree traversal */
{
 if (ptr) {
 inorder(ptr->left);
 printf("%d", ptr->data);
 inorder(ptr->right);
 }
}
void preorder(ptnode ptr)
/* preorder tree traversal */
{
 if (ptr) {
 printf("%d", ptr->data);
 preorder(ptr->left);
 preorder(ptr->right);
 }
}
void postorder(ptnode ptr)
/* postorder tree traversal */
{
 if (ptr) {
 postorder(ptr->left);
 postdorder(ptr->right);
 printf("%d", ptr->data);
 }
}
Euler Tour Traversal

- generic traversal of a binary tree
- the preorder, inorder, and postorder traversals are special cases of the Euler tour traversal
- “walk around” the tree
Conclusions

• In this lecture, we have seen examples of basic algorithms used in many applications and compared their complexities.

• Heuristics are the way to go if we cannot get the exact/best results with reasonable resources.

• You already know stack and queues ... Now you know trees!