1. Write a function, get_evens(x), that takes a list n of integers and returns a list having only the even values in x.

2. Write a function sum_of_odd_cols(x), that takes a 2-dimensional list of integers and returns the sum of the values in the odd columns of x.

3. Write a function sum_of_even_cols(x), that takes a 2-dimensional list of integers and returns the sum of the values in the even columns of x.

4. Write a function max_pos(x), that takes a 2-dimensional list of integers and returns a tuple, (a,b,c) where a is the maximum value in x, and b and c are the row and column of x where that value was found.

5. Write a list comprehension that creates a list x with tuples (a,b) where a and b are consecutive odd numbers and 1<=a<b<100. So x would be [(1,3),(3,5), (5,7) … (97,99)]

6. Write a list comprehension that creates a list x of all leap years from year 4 to year n.

7. Write a function decompose (n), that takes an integer n and returns a list comprised of the digits of n. For example if n=123 the function would return the list [1,2,3].

8. Write a function decompose (m,n), that takes an integer n and returns a list of length m, comprised of the digits of n. If m>n, then the left-most elements of the list will be 0. For example if n=123 and m=5, the function would return the list [0,0,1,2,3].

9. Write a generator prime(n) that will generate all prime numbers p where p is in the range 2 through n.