1. Construct an explicit basis for the lattice \(\{ x \in \mathbb{Z}^n : x_1 + \sum_{i=2}^{n} a_ix_i \equiv 0 \pmod{p} \} \), where \(a_i \in \mathbb{Z}_p \), \(p \) a prime.

2. Exercise 1 in Lecture 1.

3. Take \(a_1, \ldots, a_n \in \mathbb{N} \). The greatest common divisor of \(a_1, \ldots, a_n \), denoted \(\gcd(a_1, \ldots, a_n) \), is the largest integer \(d \) such that \(d \mid a_i \) (meaning \(d \) divides \(a_i \)), for all \(i \in [n] \). Show that there exists \(z_1, \ldots, z_n \in \mathbb{Z} \) such that \(\gcd(a_1, \ldots, a_n) = \sum_{i=1}^{n} z_ia_i \). Give a simple algorithm to compute \(\gcd(a_1, \ldots, a_n) \) (no need to analyze its complexity).