
Operating Systems

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-GA.2250-001

Lecture 3:
Processes and Threads - Part 2

The basic idea is that the several
components in any complex system will
perform particular subfunctions that
contribute to the overall function.

—THE SCIENCES OF THE ARTIFICIAL,

Herbert Simon

Processes Vs Threads

• The unit of dispatching is referred to
as a thread or lightweight process

• The unit of resource ownership is
referred to as a process or task

• Multithreading - The ability of an OS
to support multiple, concurrent paths of
execution within a single process

Processes Vs Threads

• Process is the unit for resource allocation
and a unit of protection.

• Process has its own address space.
• A thread has:

– an execution state (Running, Ready, etc.)
– saved thread context when not running
– an execution stack
– some per-thread static storage for local

variables
– access to the memory and resources of its

process (all threads of a process share this)

Processes Vs Threads

A single thread of execution per process, in
which the concept of a thread is not
recognized, is referred to as a single-threaded
approach … Example: MS-DOS

A Java run-time environment is an example
of a system of one process with multiple
threads.

Benefits of Threads

Takes less
time to create
a new thread

than a
process

Less time to
terminate a

thread than a
process

Switching between
two threads takes

less time than
switching between

processes

Threads enhance
efficiency in

communication
between programs

Multithreading on Uniprocessor
System

User-Lever Threads (ULT)

• All thread
management is done
by the application

• The kernel is not
aware of the
existence of threads

User-Level Threads (ULTs)
• The kernel continues to schedule the process

as a unit and assigns a single execution state .

User-Level Threads (ULTs)

Advantages

• Thread switch does not
require kernel-mode.

• Scheduling (of threads)
can be application
specific.

• Can run on any OS.

Disadvantages

• A system-call by one
thread can block all
threads of that process.

• In pure ULT,
multithreading cannot
take advantage of
multiprocessing

Kernel-Level Threads (KLTs)

• Thread management
is done by the kernel

• no thread
management is done
by the application

• Windows OS is an
example of this
approach

Kernel-Level Threads (KLTs)

Advantages

• The kernel can
simultaneously schedule
multiple threads from the
same process on multiple
processors

• If one thread in a process
is blocked, the kernel can
schedule another thread
of the same process

• Kernel routines can be
multithreaded

Disadvantages

• The transfer of control
from one thread to
another within the same
process requires a mode
switch to the kernel

Combined (Hybrid) Approach

• Thread creation is done
completely in user
space.

• Bulk of scheduling and
synchronization of
threads is by the
application (i.e. user
space).

• Multiple ULTs from a
single application are
mapped onto (smaller or
equal) number of KLTs.

• Solaris is an example

Threads and Processes
Relationship

Interprocess Communication
(IPC)

• Processes frequently need to
communicate with other processes

• Three main issues:
– How can one process pass information to

another?

– Need to make sure two or more processes
do not get in each other’s way.

– Ensure proper sequencing when
dependencies exist

Example of IPC

Example of IPC

Example of IPC
1. Process A reads in
2. Process A interrupted and B starts
3. Process B reads in
4. Process B writes file name in slot 7
5. Process A runs again
6. Process A writes file name in slot 7
7. Process A makes in = 8

Example of IPC
1. Process A reads in
2. Process A interrupted and B starts
3. Process B reads in
4. Process B writes file name in slot 7
5. Process A runs again
6. Process A writes file name in slot 7
7. Process A makes in = 8

RACE CONDITION!!

How to Avoid Race Condition?

• Prohibit more than one process from
reading and writing the shared data at the
same time -> mutual exclusion

• The choice of appropriate primitive
operations for achieving mutual exclusion
is a major design issue in an OS

• The part of the program where the shared
memory is accessed is called the critical
region

Conditions of Good Solutions

1. No two processes may be
simultaneously inside their critical
region

2. No assumptions may be made about
speeds or the number of CPUs

3. No process running outside its critical
region may block other processes

4. No process has to wait forever to
enter its critical region

Solution 1:
Disabling Interrupts

Have each process disable all interrupts

just after entering its critical region and

re-enable them just before leaving it.

Solution 1:
Why is it Bad?

• Unwise to give user processes the power
to turn off interrupts

• Affects only one CPU and not other
CPUs in the system in case of multicore
or multiprocessor systems

Solution 2:
Lock Variables

Have a shared (lock) variable, initially set

to 0. When a process wants to enter its

critical region, it first tests the lock:

• If 0, the process sets it to 1 and enters
the critical region

• If 1, process waits until it becomes 0

Solution 2:
Why is it Bad?

• Process A reads the lock and finds it 0

• Before it can set it to 1, process A is stopped
and process B starts

• Process B finds the lock to be 0, so it sets it
to 1 and enters the critical region

• Process B is stopped and process A runs

• Process A sets the lock to 1 and enters the
critical region

Solution 2:
Why is it Bad?

• Process A reads the lock and finds it 0

• Before it can set it to 1, process A is stopped
and process B starts

• Process B finds the lock to be 0, so it sets it
to 1 and enters the critical region

• Process B is stopped and process A runs

• Process A sets the lock to 1 and enters the
critical region

Two processes will be in the critical region at the same time!!

Solution 3:
Strict Alternation

Process 0 Process 1

Variable turn is initially 0

Solution 3:
Strict Alternation

Process 0 Process 1

Variable turn is initially 0

Busy waiting

Solution 3:
Strict Alternation: Why Bad?

Process 0 Process 1

What if process 0 is much faster than process 1?

Process 1 spends a lot of time here!

Solution 3:
Strict Alternation: Why Bad?

Process 0 Process 1

What if process 0 is much faster than process 1?

Process 1 spends a lot of time here!

 Violating condition 3!!
Taking turn is not a good idea when one of the
 processes is much slower than the other.

Solution 4:
Peterson’s Solution

Hardware Solution

• The instruction: TSL RX, LOCK
– TSL = Test and Set Lock

– Reads the content of memory word lock

 into register RX, and then stores a nonzero
value into lock

– The whole operation is atomic

Hardware Solution

Similar Hardware Solution

About Previous Solutions

• Processes must call enter_region and
leave_region in the correct timing. If a
process cheats, the mutual exclusion will
fail.

• The main drawbacks of all these solutions
is busy waiting. Keeping the CPU busy doing
nothing is not the best thing to do.
– Wastes CPU time

– Priority inversion problem

Sleep and Wakeup

• IPC primitives

• Block instead of wasting CPU time

• Two systemcalls:
– sleep: causes the caller to block until

another process wakes it up

– wakeup: has one parameter, the process to
be awakened

First Let’s see the:
Producer Consumer Problem

• Two processes share a common fixed
size buffer

• One process (producer): puts info into
the buffer

• The other process (consumer): removes
info from the buffer

What happens if consumer() stopped after reading count (=0) ?
 LOST WAKEUP PROBLEM

How to Solve The
Lost Wakeup Problem?

• Add a wakeup waiting bit to the picture
– When a wakeup is sent to a process that is

still awake, this bit is set.

– Later, when the process tries to go to sleep
and the bit is set, the bit will be reset but
the process will remain awake.

• BUT: What happens when we have more
than two processes? How many bits
shall we use?

Better Solution for Lost Wakeup Problem:
Semaphores

• Integer to count the number of wakeups
saved for future use

• Two primitives: down and up
• atomic actions

down: if value = 0 then sleeps

 otherwise, decrements it and continue

up: increments the value, and wakes up a
sleeping process (if any)

Mutexes??

• A variable that can be in one of two
states: locked and unlocked

• Can be used to manage critical sections

• Managed used TSL or XCHG

Didn’t We Say Processes Do Not
Share Address Space?

• Some of the shared data structures can
be stored in the kernel and accessed
through system calls

• Most modern OSes offer ways to
processes to share some portions of
their address spaces with other
processes

Forget About Sharing:
How About Message Passing?

• Two primitives: send and receive
• May be used across machines
• Are system calls

– send(destination, &message)
– receive(source, &message)

• Issues
– Lost acknowledgement
– Authentication
– performance (message passing is always slower

than stuff like semaphores, …)

Barriers

• Synchronization mechanisms

• Intended for group of processes

Scheduling

Given a group of ready processes,
 which process to run?

Scheduling

Given a group of ready processes,
 which process to run?

When to
schedule?

Categories of
scheduling algs

Scheduling
algs goals

Preemptive vs
Non-

preemptive

•Batch
•Interactive
•Real-time

When to Schedule?

• When a process is created

• When a process exits

• When a process blocks

• When an I/O interrupt occurs

Categories of Scheduling
Algorithms

• Batch
– No users impatiently waiting

– mostly nonpreemptive, or preemptive with
long period for each process

• Interactive
– preemption is essential

• Real-time
– deadlines

Scheduling Algorithms Goals

Scheduling in Batch Systems:
First-Come First-Served

• Nonpreemptive

• Processes ordered as queue

• A new process added to the end of the
queue

• A blocked process that becomes ready
added to the end of the queue

• Main disadv: Can hurt I/O bound
processes

Scheduling in Batch Systems:
Shortest Job First

• Nonpreemtive

• Assumes runtime is known in advance

• Is only optimal when all the jobs are
available simultaneously

Run in original order Run in shortest job first

Scheduling in Batch Systems:
Shortest Remaining Time Next

• Preemptive

• Scheduler always chooses the process
whose remaining time is the shortest

• Runtime has to be known in advance

Scheduling in Interactive Systems:
Round-Robin

• Each process is assigned a time interval:
quantum

• After this quantum, the CPU is given to
another process

• What is the length of this quantum?
– too short -> too many context switches -> lower

CPU efficiency

– too long -> poor response to short interactive

– quantum longer than CPU burst is good (why?)

Scheduling in Interactive Systems:
Priority Scheduling

• Each process is assigned a priority
• runnable process with the highest

priority is allowed to run
• Priorities are assigned statically or

dynamically
• Must not allow a process to run forever

– Can decrease the priority of the currently
running process

– Use time quantum for each process

Scheduling in Interactive Systems:
Multiple Queues

Scheduling in Interactive Systems:
Other Schemes

• Shortest process next
– Estimate running time based on past behavior

• Guaranteed schedule
– Make promise to the user and live up to the

promise

• Lottery scheduling
– Give each process one or more lottery tickets

• Fair-Share scheduling
– Take the user into account

Scheduling in Real-Time

• Process must respond to an event within
a deadline

• Hard real-time vs soft real-time

• Periodic vs aperiodic events

• Processes must be schedulable

• Scheduling algorithms can be static or
dynamic

Thread Scheduling

• Two levels of parallelism: processes and
threads within processes

• Kernel-bases vs user-space

Conclusion

• Threads and processes are crucial
concepts in OS design.

• As OS designer, you must make decision
regarding: process table, threading,
scheduling, etc.

• We have covered more stuff than the
book so you may find information here
more than the book (especially in mutual
exclusion part).

