
Operating Systems

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-GA.2250-001

Lecture 1: Introduction

Who Am I?

• Mohamed Zahran (aka Z)

• Computer architecture/OS/Compilers
Interaction

• http://www.mzahran.com

• Office hours: Mon 3:00-5:00 pm

• Room: WWH 320

Formal Goals of This Course

• What exactly is an operating systems?

• How does the OS interact with the
hardware and other software
applications?

• Main concepts of an OS

• OS in many contexts

Informal Goals of This Course

• To get more than an A

• To learn OS and enjoy it

• To use what you have learned in MANY
different contexts

• To be able to develop your own OS if
you want to

• To start your research project in OS

The Course Web Page

http://cs.nyu.edu/courses/spring13/CSCI-GA.2250-001/index.html

• Lecture slides

• Info about mailing list, labs, … .

• Useful links (manuals, tools, …)

The Textbook

Operating Systems: Internals and Design
7/E

William Stallings

ISBN-10: 013230998X

Grading

• Homework

• Lab

• Midterm

• Final

: 10%

: 30%

: 25%

: 35%

Grading

• Homework

• Lab

• Midterm

• Final

: 10%

: 30%

: 25%

: 35%

• Due at the beginning of the lecture
• In hardcopy
• Will be graded and returned to you
• No late submissions accepted

Grading

• Homework

• Lab

• Midterm

• Final

: 10%

: 30%

: 25%

: 35%

• Usually due few weeks after assignment
• Submitted as softcopy
• 1 point penalty per day late

Grading

• Homework

• Lab

• Midterm

• Final

: 10%

: 30%

: 25%

: 35%

• Cumulative
• Open book/notes
• No electronic equipment

Integrity

• Academic integrity
• http://www.nyu.edu/about/policies-guidelines-compliance/policies-

and-guidelines/academic-integrity-for-students-at-nyu.html

• Your homework, labs, and exams must be your own - we
have a zero tolerance policy towards cheating of any
kind and any student who cheats will get a failing grade
in the course.

• Both the cheater and the student who aided the cheater
will be held responsible for the cheating

Media
Player

emails Games Word
Processing

Media
Player

emails Games Word
Processing

Does a programmer need to understand all this hardware
 in order to write these software programs?

Media
Player

emails Games Word
Processing

Operating System

The Two Main Tasks of OS

• Provide programmers (and programs) a
clean abstract set of resources

• Manage the hardware resources

A Glimpse on Hardware

A Glimpse on Hardware

 Basic Elements

Processor(s)

Main
Memory

I/O Modules

System Bus

Booting Sequence

• BIOS starts
– checks how much RAM
– keyboard
– other basic devices

• BIOS determines boot Device
• The first sector in boot device is read into

memory and executed to determine active
partition

• Secondary boot loader is loaded from that
partition.

• This loaders loads the OS from the active
partition and starts it.

POST (Power On Self Test)

OS

Types Concepts
Different

Structures

OS

Types Concepts

• Mainframe/supercomputer OS
•batch
•transaction processing
•timesharing
•e.g. OS/390

•Server OS
•Multiprocessor OS
•PC OS
•Embedded OS
•Sensor node OS
•RTOS
•Smart card OS

Different
Structures

OS

Types Concepts

• Mainframe OS/supercomputer
•batch
•transaction processing
•timesharing
•e.g. OS/390

•Server OS
•Multiprocessor OS
•PC OS
•Embedded OS
•Sensor node OS
•RTOS
•Smart card OS

•Processes
•Its address space
•Its resources
•Process table

•Address space
•File system
•I/O
•Protection

Different
Structures

OS

Types
Different

Structures Concepts

• Mainframe OS/supercomputer
•batch
•transaction processing
•timesharing
•e.g. OS/390

•Server OS
•Multiprocessor OS
•PC OS
•Embedded OS
•Sensor node OS
•RTOS
•Smart card OS

•Processes
•Its address space
•Its resources
•Process table

•Address space
•File system
•I/O
•Protection

•Monolithic
•Layered systems
•Microkernels
•Client-server
•Virtual machines

OS

Types
Different

Structures Concepts

• Mainframe OS
•batch
•transaction processing
•timesharing
•e.g. OS/390

•Server OS
•Multiprocessor OS
•PC OS
•Embedded OS
•Sensor node OS
•RTOS
•Smart card OS

•Processes
•Its address space
•Its resources
•Process table

•Address space
•File system
•I/O
•Protection

•Monolithic
•Layered systems
•Microkernels
•Client-server
•Virtual machines

Main objectives of an OS:

• Convenience

• Efficiency

• Ability to evolve

OS

Processes

Hardware

USER

OS Services

• Program development

• Program execution

• Access I/O devices

• Controlled access to files

• System access

• Error detection and response

• Accounting

Hardware and Software
Infrastructure

 Figure 2.1 Computer Hardware and Software Infrastructure

DLL
DLL

Loader

Source Code to Execution

Assembly
Assembler Object File

Object File
Object File

Assembly
Assembly

Executable

Linker
Library
Library
Library

Assembly
Assembly

C source
Compiler

DLL

DLL
DLL

Loader

Source Code to Execution

Object File
Object File

Object File

Executable

Linker
Library
Library
Library

DLL

What happens to your program
after it is compiled but before
it can be executed?

The OS Expectation

• The OS expects executable files to
have a specific format
– Header info

• Code locations and size
• Data locations and size

– Code & data
– Symbol Table

• List of names of things defined in your program
and where they are defined

• List of names of things defined elsewhere that
are used by your program, and where they are
used.

Example of Things

#include <stdio.h>

extern int errno;

int main () {

 printf (“hello,

world\n”)

 <check errno for

errors>

}

• Symbol defined in
your program and
used elsewhere

• main

• Symbol defined
elsewhere and used
by your program

• printf

• errno

Two Steps Operation:
Parts of OS

Linking
• Stitches independently

created object files into
a single executable file
(i.e., a.out)

• Resolves cross-file
references to labels

• Listing symbols needing
to be resolved by loader

Loading
• copying a program image

from hard disk to the main
memory in order to put
the program in a ready-to-
run state

• Maps addresses within file
to physical memory
addresses

• Resolves names of dynamic
library items

• schedule program as a new
process

Libraries (I)

• Programmers are expensive.
• Applications are more sophisticated.

– Pop-down menus, streaming video, etc

• Application programmers rely more on
library code to make high quality apps
while reducing development time.
– This means that most of the executable is

library code

Libraries (II)

• A collection of subprograms
• Libraries are distinguished from

executables in that they are not
independent programs

• Libraries are "helper" code that
provides services to some other
programs

• Main advantages: reusability and
modularity

Static Libraries

• These libraries are stored on disk.
• Linker links only the libraries referenced by

the program
• Main disadvantage: needs a lot of memory

(for example, consider standard functions
such as printf and scanf. They are used
almost by every application. Now, if a system
is running 50-100 processes, each process has
its own copy of executable code for printf
and scanf. This takes up significant space in
the memory.)

Dynamic Link Libraries
(Shared Libraries)

• Why not keep those shared library
routines in memory and link at object file
when needed? (DLLs)

• A shared library is an object module that
can be loaded at run time at an arbitrary
memory address, and it can be linked to by
a program in memory.

• An application can request a dynamic
library during execution

• Main advantage: saving memory
• Main disadvantage: ~10% performance hit

A Bit About Relocation

• modifies the object program so that it
can be loaded at an address different
from the location originally specified

• The compiler and assembler (mistakenly)
treat each module as if it will be loaded
at location zero

(e.g. jump 120
is used to indicate a jump to location
120 of the current module)

A Bit About Relocation

• To convert this relative address to an absolute
address, the linker adds the base address of
the module to the relative address.

• The base address is the address at which this
module will be loaded.

Example: Module A is to be loaded starting at

location 2300 and contains the instruction
 jump 120
The linker changes this instruction to
 jump 2420

A Bit About Relocation

• How does the linker know that Module A is to
be loaded starting at location 2300?
– It processes the modules one at a time. The first

module is to be loaded at location zero. So
relocating the first module is trivial (adding zero).
We say that the relocation constant is zero.

– After processing the first module, the linker
knows its length (say that length is L1).

– Hence the next module is to be loaded starting at
L1, i.e., the relocation constant is L1.

– In general the linker keeps the sum of the lengths
of all the modules it has already processed; this
sum is the relocation constant for the next module.

A Bit About Relocation

A Bit About Relocation

Enough for Today

• OS is really a manager:
– programs, applications, and processes are

the customers
– The hardware provide the resources

• OS works in different environments and
under different restrictions
(supercomputers, workstations,
notebooks, tablets, smartphones, real-
time, …)

