The Magic Behind It All: Finite Automata

- Recognizers: “yes” or “no” about each input string
- Two Flavors:
 - Non-deterministic Finite Automata (NFA)
 - Deterministic Finite Automata (DFA)
- Main parts
 - States
 - Start
 - Accepting or final
 - transitions
Which is Which?
NFA

- Finite set of states S
- Input alphabet Σ
- Transition function that gives for each state and for each $\Sigma \cup \{\varepsilon\}$ a set of next states
- A starting state S_0
- A set of accepting or final state(s)
Another Presentation of NFA: Transition Tables

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>${0, 1}$</td>
<td>${0}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>1</td>
<td>\emptyset</td>
<td>${2}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>\emptyset</td>
<td>${3}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>3</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

+ We can easily find the transition
- Lot of space
Acceptance of Input String

Input string x is accepted if and only if: There is some path in the transition graph from start to one of the accepting states.

Which of the following are accepted: abb, aaa, $aabb$, $aaabb$, bbb?
Example

• For the following NFA indicate all paths labeled \(aabb\)
DFA

- Special case of NFA
- No moves on ε
- For each state S, and input symbol a, there is exactly one edge out of s labeled a
s = s0;
c = nextChar();
while (c != eof) {
 s = move(s, c);
 c = nextChar();
}
if (s is in F) return "yes";
else return "no";

"Yes" or "No"?
abba
babb
aababb
abbb
Some Definitions

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε-closure(s)</td>
<td>Set of NFA states reachable from NFA state s on ε-transitions alone.</td>
</tr>
<tr>
<td>ε-closure(T)</td>
<td>Set of NFA states reachable from some NFA state s in set T on ε-transitions alone; $= \bigcup_{s \in T} \varepsilon$-closure$(s)$.</td>
</tr>
<tr>
<td>move(T, a)</td>
<td>Set of NFA states to which there is a transition on input symbol a from some state s in T.</td>
</tr>
</tbody>
</table>
Simulating NFA

1) \(S = \epsilon\text{-closure}(s_0); \)
2) \(c = \text{nextChar}(); \)
3) \(\text{while} \ (c \neq \text{eof}) \{ \)
4) \(\quad S = \epsilon\text{-closure(move}(S, c)); \)
5) \(\quad c = \text{nextChar}(); \)
6) \(\} \)
7) \(\text{if} \ (S \cap F \neq \emptyset) \ \text{return} \ \text{"yes"}; \)
8) \(\text{else return} \ \text{"no"}; \)

Diagram of NFA with transitions for symbols 'a' and 'b'.
Example

Simulate the following NFA on $aabb$

What is the transition table of the above NFA?

1) $S = \epsilon\text{-closure}(s_0);$
2) $c = \text{nextChar}();$
3) $\textbf{while} (c \neq \text{eof})$
4) $\quad S = \epsilon\text{-closure}(\text{move}(S, c));$
5) $\quad c = \text{nextChar}();$
6) $\}$
7) $\textbf{if} (S \cap F \neq \emptyset) \text{ return } \text{"yes";}$
8) $\text{else return } \text{"no";}$

What is the transition table of the above NFA?
NFA \rightarrow DFA

• Subset construction: each state of DFA corresponds to a set of NFA states
• For real languages NFA and DFA have approximately the same number of states (although theory has another opinion!)
Subset Constructions

Initially, \(\epsilon\text{-closure}(s_0) \) is the only state in \(\text{Dstates} \), and it is unmarked;

\begin{verbatim}
while (there is an unmarked state \(T \) in \(\text{Dstates} \)) {
 mark \(T \);
 for (each input symbol \(a \)) {
 \(U = \epsilon\text{-closure}(\text{move}(T, a)) \);
 if (\(U \) is not in \(\text{Dstates} \))
 add \(U \) as an unmarked state to \(\text{Dstates} \);
 \(D\text{tran}[T, a] = U \);
 }
}
\end{verbatim}

States of the DFA we are constructing
\[(a|b)^*abb\]
Regular Expression -> NFA
(McNaughton-Yamada-Thompson algorithm)

\[r = a \]

\[r = s \mid t \]

\[r = st \]

\[r = s^* \]
Example: \((a | b)^* abb\)
Example: \((a|b)^*abb\)
Example: \((a|b)^*abb\)
State Minimization of DFA

• There can be many DFAs that recognize the same language.
• Smaller DFAs are more efficient (storage, speed)
• There is always a unique minimum state DFA
• This minimum-state DFA can be constructed from any DFA that recognizes the language.
How to Do It?

1. Given DFA: start with at least two subgroups: S and $S-F$

2. Repeat the following algorithm until no more progress can be made

initially, let $\Pi_{\text{new}} = \Pi$;

for (each group G of Π) {
 partition G into subgroups such that two states s and t
 are in the same subgroup if and only if for all
 input symbols a, states s and t have transitions on a
 to states in the same group of Π;

 /* at worst, a state will be in a subgroup by itself */
 replace G in Π_{new} by the set of all subgroups formed;
}

Example

\{A, B, C, D\} \{E\}

\{A, B, C\} \{D\} \{E\}

\{A, C\} \{B\} \{D\} \{E\}

<table>
<thead>
<tr>
<th>STATE</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>
Lexical Analyzer Generators
Lexical Analyzer Generators

• Each regular expression \rightarrow NFA
• Combine all NFAs as
• In case of several matches
 – Pick longest
 – Pick earliest in file
Example: $aaba$

- a: action A_1 for pattern p_1
- abb: action A_2 for pattern p_2
- a^*b^+: action A_3 for pattern p_3
Lex

• Based on DFA not NFA
• Handling lookahead
• For state minimization, initial partition:
 – groups all states that recognizes a particular token
 – places in one group those states that do not indicate any token
So

• We have covered Sections 3.6 -> 3.9
• Skim: 3.7.3, 3.7.5, 3.9.1->3.9.5 and 3.9.8
• Read carefully the rest of: 3.6, 3.7, 3.8, 3.9.6, and 3.9.7