CSCI-GA.3033-012
Graphics Processing Units (GPUs): Architecture and Programming

Lecture 12: Power-Wall

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com
This Lecture

• Why do we have power-wall?
• Techniques to solve the problem
• Real-life example processor
• What can you do in software?
 – Is there power-aware software?
Increasing number of cores

Source: http://www.prism.gatech.edu/~shong9/ISCA_2010.pptx
Power is also increasing!

Source: http://www.prism.gatech.edu/~shong9/ISCA_2010.pptx
The Problem

- Cooling for GPUs is becoming prohibitively expensive.
 - Exasperated by the low profit margins in these market segments
- Today’s cooling solutions are designed for worst-case behavior.
- Reducing the hot spots will help reduce cooling requirements.
Why Power Aware?

- Servers and Workstations
 - Packaging cost
 - High temperature = more expensive cooling system
- Embedded Devices
 - Battery Life
 - No place for fans, etc.
Moore's Law

More transistors/mm²
Moore's Law

More transistors/mm² → More activity/area → Higher speed
Moore's Law

More transistors/mm2 → More activity/area → Higher speed

More switches/cycle → More power density → Higher temperature → Lower speed
Moore's Law

More transistors/mm²
 ➔ More activity/area ➔ Higher speed

More switches/cycle
 ➔ More power density
 ➔ Higher temperature
 ➔ Lower speed

How Can We Guarantee The Green Path?
Power-Aware Computing

- Dynamic Power Consumption
- Static Power Consumption
- Temperature
So … What is it about Moore’s law?

- Power and temperature are becoming crucial
- GPU power consumption = Runtime power + idle power
- Power = dynamic + leakage
- Given power budget, how to get best performance?
- Given required performance, how to achieve it with lowest power?
GeForce 285 GTX
- GeForce 285 GTX

- **FMA with only single thread**
- **Fully exercise computing units**
- **Copies a chunk of 200MB to GPU DRAM**
- **Mult of two 8K matrices**
Be Careful

- Static power is no longer trivial
- Higher utilization does not necessarily mean higher performance but for sure means higher power consumption/dissipation
- **Goal**: maximize performance/watt
Power-Aware Computing is:

Reducing power without loosing performance
Dynamic Power Consumption

\[P_{\text{dynamic}} = \alpha CV_{DD}^2 f A \]
Dynamic Power Consumption

\[P_{\text{dynamic}} = \alpha CV_{DD}^2 fA \]

- \(P_{\text{dynamic}} \) depends on the wire lengths
- Supply voltage
 - between 0 and 1
 - how often wires transition
- Clock frequency
Static Power Consumption

- 20% or more in sub-micron era
- Mostly leakage
 - represents the power dissipated by a transistor whose gate is intended to be off

\[P = V \left(k e^{-q V_{th} / (a k_a T)} \right) \]
Temperature

- Lost power
- Leakage increases by order of magnitude at high temperature
- Higher temperature = lower mean-time-to-failure (MTTF)
- We need temperature-aware computing
Temperature -> Hot Spot

applu benchmark on a single core (source: Kevin Skadron Tutorial in ISCA’04)
What To Do About Dynamic Power

• DFVS
 – At OS level
 • idle time represents energy waste
 • deadlines for interactive programs
 – Offline compiler analysis
 • insert mode-set instructions
 • depends on program phases
 • lowers the voltage for memory-bound sections
 – Online dynamic compiler analysis
 • phase detection
 • binary instrumentation

• Reducing switching activity
System Software

Global Power Management

- Power budget
- High level scheduling

Global power/performance data

Power/performance data

Power mode

Core

Core

Core

Core
What To Do About Leakage?

• Stacking transistor
• Dynamically resized caches (mainly I-caches)
 – gated Vdd
 – Non-state-preserving
• Drowsy caches
 – Scale supply voltage to reduce leakage
What To Do About Temperature?

- Better sensors position
- Predicting temperature at places without sensors
- Avoid hot spots
- Must be taken care of from design-time
Real-Life Example: SandyBridge

PMA: Power Management Agent
PCU: Package Control Unit
DMI: Direct Media Interface
SVID: Serial Voltage ID
PECI: Platform Environment Control Interface
IMC: Integrated Memory Controller
Real-Life Example: SandyBridge

Two independent power planes:
- CPU cores, LLC, and ring
 - Each core can be turned off indept.
 - Portion of the LLC can be tuned off
- GPU

- On chip logic and embedded controller running power management firmware
- Communicates internally with cores, ring
- Monitors physical conditions Voltage, temperature, power consumption
- Controls power states CPU and GPU voltage and frequency
Real-Life Example: SandyBridge

Power Performance Management Is:

Enhance User Experience:
- Throughput performance
- Responsiveness - burst performance
- CPU / PG performance
- Battery life / Energy bills
- Ergonomics (acoustic noise, heat)

Given Physical Constraints:
- Silicon capabilities
- System Thermo-Mechanical capabilities
- Power delivery capabilities
- S/W and Operating system explicit control
- Workload and usage
Operating system, PG driver, BIOS, Embedded Controller and user preferences

Power/performance optimization algorithms
Milliseconds to seconds control algorithms

PCU “kernel” – mission critical power management events
C-state control, P-states transitions and latency sensitive actions

Thermal sensing, Maximum current control, physical layer communication
Platform control: DDR thermal, Voltage Regulator optimization, hot sensors etc.
Intel Turbo Boost in SandyBridge

Graph showing power levels and thermal budget:
- Max power: 1.2–1.3x TDP
- C0/P0 (Turbo)
- 30–60 s
- Sleep or low power
- Build up thermal budget during idle periods
- Energy budget accumulated: Used for performance burst
- In steady state, power equals TDP, possibly at higher than nominal frequency
- 5 s / 30–60 s moving average
- Time
CPU-GPU Interaction
Power-Aware Software!!
Is It for Real?
What Can A Software Application Do?

• Use less expensive operations
• Less stress on power-hungry parts
• Access and make use of internal GPU performance counters
 – PAPI
 – nvidia-smi
• Pass power-related info to OS
• Interaction of three players:
 – The application software
 – The Compiler
 – The OS
Power-Aware Applications

• Applications must be Designed and tested for power management
• Applications must handle sleep transitions seamlessly
• You can differentiate your application with power management features
 – Handle power management events
 – Scale behavior based on user’s power preference
• OS provides APIs
Power Breakdown: GeForce 285 GTX
Advanced Configuration and Power Interface (ACPI)

- An open industry specification co-developed by Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba.
- Devices must support power saving modes
- ACPI must be supported by the computer motherboard, BIOS, and the operating system
- Power management platform at the hardware level
- Establishes industry-standard interfaces for OS-directed configuration and power management on laptops, desktops, and servers.
http://www.acpi.info
OS directed Power Management
Conclusions

• Power is not longer to be neglected, both static and dynamic, for both CPU and GPU.

• Power-wall cannot be dealt with at one level, but requires cooperation from algorithms to circuits.