
CSCI-GA.2130-001

Compiler Construction

Lecture 9:
Intermediate-Code Generation I

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

Back-end and Front-end
of A Compiler

Back-end and Front-end
of A Compiler

Close to source language
(e.g. syntax tree)

Close to machine language

m x n compilers can be built by writing just m front ends and n back ends

Back-end and Front-end
of A Compiler

Includes:
• Type checking
• Any syntactic checks that remain after parsing
 (e.g. ensure break statement is enclosed within
 while-, for-, or switch statements).

Syntax Tree

T -> E1 * T T.node = new Node(‘*’. E1.node, T.node)

Syntax Tree

+

+

*

-

- a

a

b

b

c

c

*

d

T -> E1 * T T.node = new Node(‘*’. E1.node, T.node)

Syntax Tree

+

+

*

-

- a

a

b

b

c

c

*

d

T -> E1 * T T.node = new Node(‘*’. E1.node, T.node)

Syntax Tree

+

+

*

-

- a

a

b

b

c

c

*

d

Directed Acyclic Graph (DAG):
• More compact representation
• Gives clues regarding generation of efficient code

Node can have more than
one parent

Example

Construct the DAG for:

How to Generate DAG from
Syntax-Directed Definition?

All what is needed is that functions such as Node and Leaf above
check whether a node already exists. If such a node exists, a pointer
is returned to that node.

T -> E1 * T T.node = new Node(‘*’. E1.node, T.node)

How to Generate DAG from
Syntax-Directed Definition?

T -> E1 * T T.node = new Node(‘*’. E1.node, T.node)

Data Structure: Array

Data Structure: Array

Left and right children
of an intermediate node Operation code

Leaves

Scanning the array each time a new node is needed, is not
an efficient thing to do.

Data Structure: Hash Table

Hash function = h(op, L, R)

Three-Address Code

• Another option for intermediate presentation
• Built from two concepts:

– addresses and instructions

• At most one operator

Address

Can be one of the following:

• A name: source program name

• A constant

• Compiler-generated temporary

Instructions

Procedure call such as p(x1, x2, …, xn) is implemented as:

Example

OR

Choice of Operator Set

• Rich enough to implement the
operations of the source language

• Close enough to machine instructions to
simplify code generation

Data Structure

How to present these instructions in a
data structure?
– Quadruples

– Triples

– Indirect triples

Data Structure:
Quadruples

• Has four fields: op, arg1, arg2, result

• Exceptions:
– Unary operators: no arg2

– Operators like param: no arg2, no result

– (Un)conditional jumps: target label is the
result

Data Structure:
Triples

• Only three fields: no result field

• Results referred to by its position

Representation of a = b * -c + b * -c

Data Structure:
Indirect Triples

• When instructions are moving around
during optimizations: quadruples are
better than triples.

• Indirect triples solve this problem

List of pointers to triples
Optimizing complier can reorder instruction
list, instead of affecting the triples themselves

Single-Static-Assignment (SSA)

• Is an intermediate presentation

• Facilitates certain code optimizations

• All assignments are to variables with
distinct names

Single-Static-Assignment (SSA)

Example:

If we use different names for X in true part and false part, then which name
shall we use in the assignment of y = x * a ?

The answer is: Ø-function

Returns the value of its argument that corresponds to the control-flow
path that was taken to get to the assignment statement containing the
Ø-function

Example

Types and Declarations

• Type checking: to ensure that type of
operands matches the type expected by
operator

• Determine the storage needed
• Calculate the address of an array

reference
• Insert explicit type conversion
• Choose the right version of an operator
• …

Storage Layout

• From the type, we can determine
amount of storage at run time.

• At compile time, we will use this amount
to assign its name a relative address.

• Type and relative address are saved in
the symbol table entry of the name.

• Data with length determined only at run
time saves a pointer in the symbol table.

Storage Layout

• Multibyte objects are stored in
consecutive bytes and given the address of
the first byte

• Storage for aggregates (e.g. arrays and
classes) is allocated in one contiguous block
of bytes.

B B

To keep track of the next
available relative address

Create a symbol table entry

Translations of Statements
and Expressions

Syntax-Directed Definition
(SDD)

Syntax-Directed Translation
(SDT)

Three-address code of E

Build an
instruction

Address holding value of E
(e.g. tmp variable, name, constant)

Get a temporary
variable

Current symbol table

Generating three-address
code incrementally
to avoid long strings
manipulations

gen() does two things:
• generate three address instruction
•append it to the sequence of
 instructions generated so far

Arrays

• Elements of the same type

• Stored consecutively in memory

• In languages like C or Java elements
are: 0, 1, …, n-1

• In some other languages:

 low, low+1, …, high

Arrays

If elements start with 0, and element width is w, then a[i] address is:
base is address of A[0]

Generalizing to two-dimensions a[i1][i2]:
w1 is width of a row and
w2 the width of an element

Generalizing to k-dimensions:

or

w is width of an element, n2 is number
of elements per row

or

pointer to symbol table entry

temporary used
while computing
the offset

A is a 2x3 array of integers

So…

• Skim: 6.3.1, 6.3.2

• Read: Beginning of chapter 6 -> 6.4

