CSCI-GA.2130-001
Compiler Construction

Lecture 5:
Lexical Analysis II

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
The Magic Behind It All: Finite Automata

• Recognizers: “yes” or “no” about each input string

• Two Flavors:
 – Non-deterministic Finite Automata (NFA)
 – Deterministic Finite Automata (DFA)

• Main parts
 – States
 • Start
 • Accepting or final
 – transitions
Which is Which?
NFA

- Finite set of states S
- Input alphabet Σ
- Transition function that gives for each state and for each $\Sigma \cup \{\varepsilon\}$ a set of next states
- A starting state S_o
- A set of accepting or final state(s)
Another Presentation of NFA: Transition Tables

+ We can easily find the transition
- Lot of space

<table>
<thead>
<tr>
<th>STATE</th>
<th>a</th>
<th>b</th>
<th>ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>${0, 1}$</td>
<td>${0}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>1</td>
<td>\emptyset</td>
<td>${2}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>\emptyset</td>
<td>${3}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>3</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
Acceptance of Input String

Input string x is accepted if and only if:
There is some path in the transition graph from start to one of the accepting states

Which of the following are accepted: abb, aaa, $aabb$, $aaabb$, bbb?
Example

- For the following NFA indicate all paths labeled $aabb$
DFA

- Special case of NFA
- No moves on ε
- For each state S, and input symbol a, there is exactly one edge out of s labeled a
"Yes" or "No"?

abba
babbb
aababb
abbb
Some Definitions

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε-closure(s)</td>
<td>Set of NFA states reachable from NFA state s on ε-transitions alone.</td>
</tr>
<tr>
<td>ε-closure(T)</td>
<td>Set of NFA states reachable from some NFA state s in set T on ε-transitions alone; $= \bigcup_{s \in T} \varepsilon$-closure($s$).</td>
</tr>
<tr>
<td>$move(T, a)$</td>
<td>Set of NFA states to which there is a transition on input symbol a from some state s in T.</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
Simulating NFA

1) \(S = \varepsilon\text{-closure}(s_0); \)
2) \(c = \text{nextChar}(); \)
3) \(\text{while } (c \neq \text{eof}) \{ \)
4) \(\quad S = \varepsilon\text{-closure}(\text{move}(S, c)); \)
5) \(\quad c = \text{nextChar}(); \)
6) \(\} \)
7) \(\text{if } (S \cap F \neq \emptyset) \text{ return "yes";} \)
8) \(\text{else return "no";} \)
Example

Simulate the following NFA on $aabb$

What is the transition table of the above NFA?

1) $S = \epsilon$-closure(s_0);
2) $c = nextChar()$;
3) while ($c != eof$) {
 4) $S = \epsilon$-closure(move(S, c));
 5) $c = nextChar()$;
4) }
7) if ($S \cap F != \emptyset$) return "yes";
8) else return "no";
NFA -> DFA

• Subset construction: each state of DFA corresponds to a set of NFA states
• For real languages NFA and DFA have approximately the same number of states (although theory has another opinion!)
initially, \(\epsilon\text{-closure}(s_0) \) is the only state in \(Dstates \), and it is unmarked;

\[\text{while (there is an unmarked state } T \text{ in } Dstates) \{ \]
mark \(T \);
\[\text{for (each input symbol } a \text{) } \{ \]
\[\quad U = \epsilon\text{-closure}(\text{move}(T, a)); \]
\[\quad \text{if (} U \text{ is not in } Dstates \) \]
\[\quad \quad \text{add } U \text{ as an unmarked state to } Dstates; \]
\[\quad Dtran[T, a] = U; \]
\[\} \}

States of the DFA we are constructing
(a | b)*abb
Regular Expression \(\rightarrow\) NFA
(McNaughton-Yamada-Thompson algorithm)

\[r = a \]

\[r = s | t \]

\[r = st \]

\[r = s^* \]
Example: $(a|b)^*abb$
Example: $\,(a|b)^*abb$
Example: \((a|b)^*abb\)
State Minimization of DFA

- There can be many DFAs that recognize the same language.
- Smaller DFAs are more efficient (storage, speed)
- There is always a unique minimum state DFA
- This minimum-state DFA can be constructed from any DFA that recognizes the language.
How to Do It?

1. **Given DFA**: start with at least two subgroups: S and $S-F$

2. Repeat the following algorithm until no more progress can be made

```plaintext
initially, let $\Pi_{new} = \Pi$;
for ( each group $G$ of $\Pi$ ) {
    partition $G$ into subgroups such that two states $s$ and $t$
    are in the same subgroup if and only if for all
    input symbols $a$, states $s$ and $t$ have transitions on $a$
    to states in the same group of $\Pi$;
    /* at worst, a state will be in a subgroup by itself */
    replace $G$ in $\Pi_{new}$ by the set of all subgroups formed;
}
```
Example

\[
\begin{align*}
\{A,B,C,D\} & \quad \{E\} \\
\{A,B,C\} & \quad \{D\} \quad \{E\} \\
\{A,C\} & \quad \{B\} \quad \{D\} \quad \{E\}
\end{align*}
\]

\[
\begin{array}{|c|c|c|}
\hline
\text{STATE} & a & b \\
\hline
A & B & A \\
B & B & D \\
D & B & E \\
E & B & A \\
\hline
\end{array}
\]
Lexical Analyzer Generators

- Each regular expression \rightarrow NFA
- Combine all NFAs as
- In case of several matches
 - Pick longest
 - Pick earliest in file
\[a \quad \{ \text{action } A_1 \text{ for pattern } p_1 \} \]
\[\text{abb} \quad \{ \text{action } A_2 \text{ for pattern } p_2 \} \]
\[a^*b^+ \quad \{ \text{action } A_3 \text{ for pattern } p_3 \} \]
Lex

• Based on DFA not NFA
• Handling lookahead
• For state minimization, initial partition:
 – groups all states that recognizes a particular token
 – places in one group those states that do not indicate any token
So

• We have covered Sections 3.6 -> 3.9
• Skim: 3.7.3, 3.7.5, 3.9.1->3.9.5 and 3.9.8
• Read carefully the rest of: 3.6, 3.7, 3.8, 3.9.6, and 3.9.7