Compiler Construction
Lecture 5: Lexical Analysis II

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
The Magic Behind It All: Finite Automata

- Recognizers: “yes” or “no” about each input string
- Two Flavors:
 - Non-deterministic Finite Automata (NFA)
 - Deterministic Finite Automata (DFA)
- Main parts
 - States
 - Start
 - Accepting or final
 - transitions
Which is Which?
NFA

- Finite set of states \(S \)
- Input alphabet \(\Sigma \)
- Transition function that gives for each state and for each \(\Sigma \cup \{ \varepsilon \} \) a set of next states
- A starting state \(S_0 \)
- A set of accepting or final state(s)
Another Presentation of NFA: Transition Tables

We can easily find the transition
- Lot of space
Acceptance of Input String

Input string \(x \) is accepted if and only if:
There is some path in the transition graph from start to one of the accepting states

Which of the following are accepted: \(abb, aaa, aabb, aaabb, bbb \)?
Example

- For the following NFA indicate all paths labeled $aabb$
DFA

- Special case of NFA
- No moves on ε
- For each state S, and input symbol a, there is exactly one edge out of s labeled a
s = s_0;
c = nextChar();
while (c != eof) {
 s = move(s, c);
 c = nextChar();
}
if (s is in F) return "yes";
else return "no";

"Yes" or "No"?

abba
babbb
aababb
abbb
Some Definitions

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon\text{-closure}(s))</td>
<td>Set of NFA states reachable from NFA state (s) on (\varepsilon)-transitions alone.</td>
</tr>
<tr>
<td>(\varepsilon\text{-closure}(T))</td>
<td>Set of NFA states reachable from some NFA state (s) in set (T) on (\varepsilon)-transitions alone; (= \bigcup_{s \in T} \varepsilon\text{-closure}(s)).</td>
</tr>
<tr>
<td>(move(T, a))</td>
<td>Set of NFA states to which there is a transition on input symbol (a) from some state (s) in (T).</td>
</tr>
</tbody>
</table>

![Diagram](image_url)
Simulating NFA

1) \(S = \varepsilon\text{-closure}(s_0); \)
2) \(c = \text{nextChar}(); \)
3) \(\text{while} (c \neq \text{eof}) \{ \)
4) \(\quad S = \varepsilon\text{-closure}(\text{move}(S, c)); \)
5) \(\quad c = \text{nextChar}(); \)
6) \(\} \)
7) \(\text{if} (S \cap F \neq \emptyset) \text{ return } "yes"; \)
8) \(\text{else return } "no"; \)
Example

Simulate the following NFA on $aabb$

What is the transition table of the above NFA?

```
1) $S = \epsilon$-closure($s_0$);
2) $c = nextChar$;
3) while ($c \neq eof$) {
4) $S = \epsilon$-closure(move($S, c$));
5) $c = nextChar$;
6) }
7) if ($S \cap F \neq \emptyset$) return "yes";
8) else return "no";
```
NFA \rightarrow DFA

- Subset construction: each state of DFA corresponds to a set of NFA states
- For real languages NFA and DFA have approximately the same number of states (although theory has another opinion!)
initially, ε-closure(s_0) is the only state in $Dstates$, and it is unmarked;

while (there is an unmarked state T in $Dstates$) {
 mark T;
 for (each input symbol a) {
 $U = \varepsilon$-closure(move(T, a));
 if (U is not in $Dstates$)
 add U as an unmarked state to $Dstates$;
 $Dtran[T, a] = U$;
 }
}

States of the DFA we are constructing
\[(a \mid b)^*abb\]
Regular Expression -> NFA (McNaughton-Yamada-Thompson algorithm)

\[
\begin{align*}
\text{start} & \quad \xrightarrow{a} \quad f \\
& \quad \xrightarrow{\text{start}} \quad N(s) \quad N(t) \quad f \\
& \quad \xrightarrow{\epsilon} \quad f
\end{align*}
\]

\[
\begin{align*}
r &= a \\
r &= s \mid t \\
r &= st \\
r &= s^*
\end{align*}
\]
Example: \((a|b)^*abb\)
Example: \((a|b)^*abb\)

\[(a|b)^*\]

\[(a|b)^*a\]
Example: \((a|b)^*abb\)
State Minimization of DFA

- There can be many DFAs that recognize the same language.
- Smaller DFAs are more efficient (storage, speed)
- There is always a unique minimum state DFA
- This minimum-state DFA can be constructed from any DFA that recognizes the language.
How to Do It?

1. Given DFA: start with at least two subgroups: S and S-F

2. Repeat the following algorithm until no more progress can be made

initially, let $\Pi_{new} = \Pi$;

for (each group G of Π) {
 partition G into subgroups such that two states s and t
 are in the same subgroup if and only if for all
 input symbols a, states s and t have transitions on a
 to states in the same group of Π;
 /* at worst, a state will be in a subgroup by itself */
 replace G in Π_{new} by the set of all subgroups formed;
}

Example

\{A,B,C,D\} \{E\}

\{A,B,C\} \{D\} \{E\}

\{A,C\} \{B\} \{D\} \{E\}

<table>
<thead>
<tr>
<th>STATE</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>
Lexical Analyzer Generators

- Each regular expression \rightarrow NFA
- Combine all NFAs as
- In case of several matches
 - Pick longest
 - Pick earliest in file
\[a \quad \{ \text{action } A_1 \text{ for pattern } p_1 \} \]
\[\text{abb} \quad \{ \text{action } A_2 \text{ for pattern } p_2 \} \]
\[a^*b^+ \quad \{ \text{action } A_3 \text{ for pattern } p_3 \} \]
Lex

- Based on DFA not NFA
- Handling lookahead
- For state minimization, initial partition:
 - groups all states that recognizes a particular token
 - places in one group those states that do not indicate any token
So

- We have covered Sections 3.6 -> 3.9
- Skim: 3.7.3, 3.7.5, 3.9.1-3.9.5 and 3.9.8
- Read carefully the rest of: 3.6, 3.7, 3.8, 3.9.6, and 3.9.7