Exercise 3.1. The computation of derivatives by finite differences illustrates some of the inevitable tradeoffs in finite-precision calculations.

Consider a twice-continuously differentiable function f of a single variable x. The Taylor series expansion of f about the point \bar{x} is

$$f(\bar{x} + h) = f(\bar{x}) + hf'(\bar{x}) + \frac{1}{2}h^2f''(\xi),$$

where ξ lies between \bar{x} and $\bar{x} + h$ (note that h need not be positive!). The simplest form of derivative approximation is the forward-difference formula,

$$\phi(\bar{x}, h) = \frac{f(\bar{x} + h) - f(\bar{x})}{h},$$

where h is called the finite-difference interval. The truncation error e_T in using $\phi(\bar{x}, h)$ (3.2) to approximate $f'(\bar{x})$ is the neglected term in the exact relation (3.1), namely

$$e_T \equiv \phi(\bar{x}, h) - f'(\bar{x}) = \frac{1}{2}hf''(\xi).$$

(a) What does formula (3.3) suggest about how to choose h to make the error in approximating $f'(\bar{x})$ by $\phi(\bar{x}, h)$ as small as possible?

(b) For $f(x) = \sin(x)$, give an upper bound on the absolute value of the truncation error (3.3), expressed in terms of h, that is valid for all \bar{x}.

(c) Consider the function $f(x) = \sin(x)$ for two values of \bar{x} ($\bar{x} = 0$ and $\bar{x} = 2$) and ten values of h ($h = 10^{-5}, \ldots, 10^{-14}$).

(i) Compute and print $f'(\bar{x})$ to full precision (approximately 16 decimal digits) for $\bar{x} = 0$ and $\bar{x} = 2$.

In this assignment, please use the two-norm unless otherwise specified.
(ii) For each \bar{x} and each h, use ‘format hex’ to print out the IEEE double-precision floating point representations of the computed values of $f(\bar{x} + h)$ and $f(\bar{x})$, and the associated computed difference $f(\bar{x} + h) - f(\bar{x})$.

(iii) For each \bar{x} and each h, compute $\phi(\bar{x}, h)$ using formula (3.2), compute the difference $\phi(\bar{x}, h) - f'(\bar{x})$, and print these values.

(d) Explain the results of part (c)(iii), i.e. explain why the computed $\phi(\bar{x}, h)$ does not become an increasingly accurate approximation of $f'(\bar{x})$ as h becomes smaller. What source of error, in addition to truncation error, affects the computed values of $\phi(\bar{x}, h)$? (Note: Your answer should bring in the hex values computed in part (c)(iii).) How might one estimate or bound this second source of error? Does it behave differently at $\bar{x} = 0$ and $\bar{x} = 2$? If so, explain why.

(e) Based on these results, comment on general strategies for choosing h in the forward-difference formula (3.2) to obtain the most accurate computed results.

Exercise 3.2. Make up your own examples of 2×2 real matrices A, B, C, and D with integer elements but with no zero elements such that:

(a) $A^2 = -I$;
(b) $B^2 = 0$;
(c) $CD = -DC$, with $CD \neq 0$.

In each case, please explain how you came up with your examples, and write out each matrix and the associated power (e.g., A^2) or product (e.g., CD) in full.

Exercise 3.3.

(a) If A and B are nonsingular, show that AB is nonsingular.

(b) If A and B are nonsingular, show that $\text{cond}(AB) \leq \text{cond}(A) \text{cond}(B)$, where the condition number of the nonsingular matrix X is given by $\text{cond}(X) = \|X\|\|X^{-1}\|$.

(c) Make up your own examples of nonsingular nondiagonal matrices A and B, with $A \neq B$, such that:

(i) $\text{cond}(AB) = \text{cond}(A) \text{cond}(B)$ and
(ii) $\text{cond}(AB) \ll \text{cond}(A) \text{cond}(B)$.

Exercise 3.4. In part(b) of this problem, the computed solution x of the linear system $Ax = b$ should be obtained with the Matlab command $x = A \backslash b$ (or any equivalent software that solves linear systems using a backward stable and reliable method and IEEE double-precision arithmetic).
(a) Given a nonsingular matrix A and a vector b, let x denote the exact solution of $Ax = b$. If $\|A\| = 1$, $\|b\| = 1$ and $\|x\| = 10^4$, what does this tell you about $\text{cond}(A)$? Why?

(b) Give your own example that consists of the following:

(i) a nondiagonal nonsingular ill-conditioned matrix A for which

$$1 \leq \|A\| \leq 5 \quad \text{and} \quad 10^5 \leq \text{cond}(A) \leq 10^{16};$$

(ii) a right-hand side \tilde{b} with $1 \leq \|\tilde{b}\| \leq 3$ such that $10^3 \leq \|\tilde{x}\| \leq 10^6$, where \tilde{x} is the computed solution of $A\tilde{x} = \tilde{b}$;

(iii) a right-hand side \bar{b} with $1 \leq \|\bar{b}\| \leq 3$ such that $1 \leq \|\bar{x}\| \leq 5$, where \bar{x} is the computed solution of $A\bar{x} = \bar{b}$;

(iv) Explain how you constructed A, \tilde{b}, and \bar{b}.

Exercise 3.5. Consider an $n \times n$ upper-triangular matrix U such that

$$u_{11}u_{22}\cdots u_{n-1,n-1} \neq 0 \quad \text{but} \quad u_{nn} = 0.$$

(This means that U is singular.)

(a) Assuming that U has the above form, give a general algorithm for computing a nonzero vector x such that $Ux = 0$.

(b) Apply your algorithm to the specific matrix

$$U = \begin{pmatrix}
1 & -1 & -1 \\
2 & 1 & \\
0 & &
\end{pmatrix}$$

and give the solution you found. What is the general form of all nonzero vectors x satisfying $Ux = 0$ for this particular U?

Exercise 3.6. Consider the matrix

$$A = \begin{pmatrix}
.932165 & .443126 & .417632 \\
.712345 & .915312 & .887652 \\
.632165 & .514217 & .493909
\end{pmatrix}. $$

(a) What is $\text{cond}(A)$?

(b) Compute the LU decomposition of A. What feature of U shows immediately that A is ill-conditioned?
(c) Define b and c as

$$b = \begin{pmatrix} .876132 \\ .815327 \\ .912345 \end{pmatrix}, \quad c = \begin{pmatrix} .876132 \\ .815327 \\ .648206 \end{pmatrix}.$$

Compute $\|b\|$ and $\|c\|$. Solve the two systems $Ax = b$ and $Ay = c$, and give the two computed solutions x and y and their norms. Compute the associated residual vectors $r = b - Ax$ and $s = c - Ay$. What difference do you notice in the sizes of $\|x\|$ and $\|y\|$? Is there a comparable difference in size between $\|r\|$ and $\|s\|$? Explain the statement: “b reflects the conditioning of A, while c does not”.

(d) Define your own two “random” vectors d and \tilde{d} of unit two-norm. Compute the solutions z of $Az = d$ and \tilde{z} of $A\tilde{z} = \tilde{d}$, and print each solution, its norm, and the norm of the residual. Do your results with d and \tilde{d} reveal the ill-conditioning of A? Why or why not? Explain.