Problem 2-1 (Recursive Inseparability) 20 points

Recall that two disjoint languages A and B are called \textit{recursively inseparable}, if there is no recursive language R such that $A \subseteq R$ and $B \cap R = \emptyset$.

(a) Show that if disjoint $A, B \in \text{co} \mathcal{RE}$, then they are recursively separable.

(b)∗ Given a language $L \in \mathcal{RE}$, let $TM_L = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = L\}$. Show that if L_1 and L_2 are distinct recursively enumerable languages and $L_1 \subset L_2$, then TM_{L_1} is recursively inseparable from TM_{L_2}.

\footnote{Do you think the condition $L_1 \subset L_2$ is important? Try to see where you use it.}

\textbf{(Hint:} Notice that this implies that $TM_\emptyset = E_{TM}$ is recursively inseparable from TM_L, for any $L \neq \emptyset$. Does it ring a bell? Recall Rice’s theorem and try to do something analogous.)

Problem 2-2 (Completeness and Reductions) 10 points

Assume $A \in \mathcal{RE}$ is m-complete. For each of the following 3 conditions, say if the appropriate language B exists, and if yes, what is the most general thing you say about such B (i.e., which class it must/must not belong to):

(a) $A \leq_m B$ and $A \leq_m \overline{B}$;

(b) $B \leq_m A$ and $\overline{B} \leq_m A$;

(c) $B \leq_m A \leq_m \overline{B}$.

Problem 2-3 (True or False) 20 points

Let W be a vocabulary. If Γ is a set of sentences, let $\text{Thm}(\Gamma) = \{\gamma \mid \Gamma \models \gamma\}$. If M is a model, let $\text{True}(M) = \{\gamma \mid \models_M \gamma\}$. Briefly answer the following questions. Be sure to give a convincing reason for your answer.

(a) Assume Γ is consistent. Can $\text{Thm}(\Gamma)$ be recursive?

(b) Assume Γ is finite. Does it imply that $\text{Thm}(\Gamma)$ is recursive?

(c)∗ Assume Γ is r.e. Is there always a recursive set Δ such that $\text{Thm}(\Gamma) = \text{Thm}(\Delta)$?

\textbf{(Hint:} Recall the notion of “lexicographic enumerators” from homework 1.)
(d) We know in general that \(\text{Thm}(\Gamma) \) is r.e. when \(\Gamma \) is r.e. Assume that for every \(\gamma \), either \(\Gamma \models \gamma \) or \(\Gamma \models \neg \gamma \) (or possibly both). Does it follow that \(\text{Thm}(\Gamma) \) is recursive?

\textbf{(Hint: Do not forget to consider two cases.)}

(e) Assume \(\text{True}(M) \) is recursive. Does it follows that some \(\Gamma \) axiomatizes \(M \), i.e. \(\text{True}(M) = \text{Thm}(\Gamma) \)?

(f)** \textit{Extra Credit:} Assume \(\Gamma \) is consistent and \(\text{Thm}(\Gamma) \) is recursive. Does it follows that \(\Gamma \) axiomatizes some model \(M \), i.e. \(\text{True}(M) = \text{Thm}(\Gamma) \)?

\textbf{Problem 2-4 (Gödel Incompleteness Again) \hspace{1cm} 25 points}

Let \(W \) be some vocabulary containing constant symbol 0 and unary function symbol \(s \) (meant to represent successor). Then we can “encode” an integer \(n \geq 0 \) in \(W \) by \(n = s(\ldots s(0)\ldots) \), where \(s \) is applied \(n \) times. Let \(\Gamma \) be a consistent (i.e., one cannot derive contradictions from \(\Gamma \)) recursively enumerable set of axioms over \(W \). Now given a formula \(\alpha(x) \) over \(W \), we say that is \textit{represents} a set of integers \(R(\alpha; \Gamma) = \{ n \mid \alpha(n) \in \text{Thm}(\Gamma) \} \). In other words, \(R(\alpha; \Gamma) \) consists of integers “making” \(\alpha \) a consequence of \(\Gamma \).

(a) Show that \(R(\alpha; \Gamma) \) is r.e.

(b) Assume \(R(\alpha; \Gamma) \) is not recursive. Show there exists an integer \(n_0 \) such that \(\Gamma \not\models \alpha(n_0) \) and \(\Gamma \not\models \neg \alpha(n_0) \). In other words, neither \(\alpha(n_0) \), nor \(\neg \alpha(n_0) \) is a valid consequence of \(\Gamma \).

\textbf{(Hint: Assuming that such \(n_0 \) does not exist, show that \(R(\alpha; \Gamma) \) is recursive, which is a contradiction.)}

(c)** Assume further that \(R(\alpha; \Gamma) \) is shown undecidable via a \textit{mapping} reduction from \(A_{\text{TM}} \): \(A_{\text{TM}} \leq_m R(\alpha; \Gamma) \). Using recursion theorem, give an explicit integer \(n_0 \) satisfying the claim of part (b).

\textbf{(Hint: Do exactly what we did to give explicit sentence which was true but not provable for integers. Of course, justify each step.)}

\textbf{Problem 2-5 (Arithmetic Hierarchy) \hspace{1cm} 15 points}

Place the following languages as low in the arithmetic hierarchy as you can (\textit{extra credit:} can you prove that you cannot go any lower?)

(a) \(\text{INF} = \{ \langle M \rangle \mid L(M) \text{ is infinite} \} \).

(b) \(\text{REG} = \{ \langle M \rangle \mid L(M) \text{ is regular} \} \).

(c) Give an explicit Turing reduction showing that \(\text{INF} \leq_t \text{REG} \).
Problem 2-6* (Post’s Theorem for \(n = 2 \))

I stated without formal proof Post’s theorem: \(\Sigma_n = \exists^n \), \(\Pi_n = \forall^n \). In this problem, you will prove the “interesting” part of this theorem for \(n = 2 \). Specifically, show that \(\Sigma_2 \subseteq \exists^2 \). More precisely, recall that \(\Sigma_2 = \{ L \mid \exists \text{TM} \ M^{\text{ATM}}(\cdot) \text{ s.t. } L(M^{\text{ATM}}) = L \} \). For each \(L \in \Sigma_2 \), you have to find a recursive relation \(R(x, y, z) \) such that \(x \in L \iff \exists y \forall z \ R(x, y, z) \), i.e.

\[
M^{\text{ATM}}(x) \text{ accepts } \iff \exists y \forall z \ R(x, y, z)
\]