Final Project Discussion

Adam Meyers
New York University
Outline

• Goals
• Requirements
• Types of Projects
• Examples
Goals

• Some Version that works, even if more basic than intended
• Clear Description
 – Including what worked and what didn't work
• Impact Beyond this Class
 – Step towards Conference submission
 – Distribute-able Software or Other Resource
 • Open source or Commercial
 • Need not be final version
 – Step towards further research
 • Specifications, pilot studies, etc.
 • Preliminary research for later project
Project Time Line

• Project Proposal
 – Due November 14, 2017

• Project Talk:
 – Single student projects
 • 3 minutes + 1 minute per questions
 • 3 slides summarizing recommended
 – Multi-student projects
 • 4 minutes + 1 minutes per question
 • 4 slides recommended
 – Presented on December 5, 2017 and December 7, 2017
 • Maximum Time = 38 1-student talks * 4 min = 144 min
 • Estimate = (18 1-student talks * 4 min) + (10 multi-student talks * 5 min) = 122 minutes
 • 2 * 75 minute class = 150 minutes
 • At least 6 minutes, but probably 28 minutes maximum leeway

• Final Project Report Due
 – December 14, 2017
Types of Final Projects

- **Programming Project** – a working program, evaluation and a write-up
- **Resource** (lexicon, annotated corpus, etc.) – specifications, evaluation and write-up
- **Survey Paper** – Try to describe the state of the art for attempted solutions to a particular NLP problem or subfield.
Format

• All projects should include a written paper of approximately 5-10 pages, not including references.
 – The page length is less important than the content
 – You may hand in other materials in addition to the paper
• Use the ACL 2016 style guidelines (suggested, not required)
 – Call for papers: http://acl2016.org/index.php?article_id=9
 – Formatting Instructions:
 • http://acl2016.org/files/acl2016.zip
 – Use instructions for final copy, not submission (blind review)
 – Latex style files for the text and the bibliography are provided
 • This makes formatting easy if you use latex
 • Typical for many areas of CS, including NLP
 • https://www.overleaf.com/—Web-based interface that compiles latex in real-time
 – No MS Word template, but .pdf file explains guidelines
Collaboration

• Types of Collaboration
 – A team project
 – Set of projects that are components of a larger system
 • e.g., pipeline architecture
 – A shared task with different systems
 • 1 group could create the task via annotation and specs
 – That group could also conduct the evaluation
 – They could create your shared task and advertise on the forum
 • Several groups could make systems that run on this data
 – Ensemble system combining different approaches
 – Trading tasks, e.g., annotating for each other's tasks
 – Tasks that are part of a pipeline, e.g.,
 • Student/Group 1 does NE extraction
 • Student/Group 2 does Relation extraction using those Nes
 • Student/Group 3 does coreference using NEs
 – relations extracted by Group 2 important feature for coreference system
Considerations for Group Projects

• Divide labor based on individual strengths

• Code writing
 – Version control
 – Write separate components, but agree on input and output specifications
 – If different programming languages, consider using file I/O

• Possibly choose different pieces of a pipeline architecture
 – input \rightarrow system$_1$ $|$ system$_2$ $|$ \ldots $|$ system$_{N-1}$ \rightarrow output
Example of How to Work Together

- Student$_1$ and Student$_2$ invent a new task: automatic classification of recipes
 - Recipe = appetizer, dessert; main course; lunch; dinner; breakfast;
 - Ingredients = main ingredient; minor ingredient; garnish; other
- Student$_1$:
 - Writes annotation guidelines
 - Writes up an entry program
 - Annotates data 1 time
 - Adjudicates multiply annotated data
 - Choosing some features for final ML system
 - Designs and runs evaluation on system
- Student$_2$:
 - Sets up corpus: acquires corpus, formats corpus, divides into train, dev and test
 - Writes baseline system for task
 - Annotates data 1 time
 - Coordinates tests of algorithms in Machine Learning Package
 - Chooses some features for final system
Proposal (due 11/14/2017)

• A couple pages showing that:
 – You have begun working on your project
 – It is plausible

• Problem Statement or Introduction
 – Indication about what motivates the work you are describing: the research question you are investigating, the purpose of the algorithm you are implementing, etc.

• Strategy for Solving the Problem
 – Programming Project: Your algorithm and how you plan to implement and test it. Include both a simple version that you are confident you can complete before the deadline and a more elaborate version that you want to implement if you have time.

• Resources
 – Annotation Project: initial specifications, a small amount of annotation (e.g., 1 page), and a plan on how to achieve a modest amount of high-quality annotation.
 – Lexicon Project: initial specifications, a small number of lexical entries, a word list or method for deriving word list, method for deriving dictionary (manual, automatic, semi-automatic)

 – Survey paper: what you plan to read and how you expect it will address the problem statement

• If this a multi-person project, please indicate the roles each member will play
 – Makes grading easier

• If this is a single-person project, please indicate if you would consider teaming up with somebody who is working in a similar area

• Indicate any other forms of collaboration you are considering
How to Get Started

• Find an area that interests you and read 1 or 2 academic papers in that area

• A possible goal is to produce a paper similar to one of the ones that you read
 – I don't expect a conference-grade paper in 1 month of work – the beginnings of 1 would be nice
 – However, this can still give you an idea of the flavor of paper that I am looking for
 • Type of evaluation
 • Sort of references
 • Etc.
Final Submission: Programming Project

• A working program
 – If your program works, but you cannot share it that is OK, but please indicate the issue (e.g., it is owned by your employer).
 – **Implement at least one component yourself**, though including other systems & libraries is expected

• Sample input and Output
 – training/development/test data and output

• A written description:
 – Some NLP references
 – Purpose of program
 – If you incorporate libraries/other programs, be clear about the part of the project that you implemented yourself
 – Description of the algorithms used
 – Description of baseline(s)
 – Evaluation
Baseline and Full Systems for Programming Projects

• It is useful to compare your results to baselines, systems used for purposes of comparison.

• A (low) baseline system can represent an obvious method that any system should beat
 – For example, for POS taggers, choose most frequent tag for each word based on training corpus, and choose NN for all unknown words.
 • It is possible that such a system could get 75% accuracy (suppose 50% of tokens have only 1 possible tag and another 25% have one tag that makes up at least 50% of the instances).

• Higher baseline systems may be proof-of-concept systems, very basic implementations of what you are doing before adding bells & whistles.

• It is a good idea to mention one or more baselines in your proposal. It is a good idea to guarantee that you can produce something simple, even if you have more exciting things you would like to try.
Sample Programming Projects

• Sequence Labeling
 – Strategies: Rule based, HMM or Other
 – Types: POS tagger, Chunker, NE tagger, Time Expression, …

• Information Extraction
 – Named Entities, Time Expressions, Relations, Events

• Implement Existing NLP Algorithm

• Document Classification
 – Gather features/statistics of documents segmented into classes
 • Genre, Style, Topic, Source, Viewpoint, …
 – Use to Automatically sort an unsegmented set of documents

• Automatic Summarization

• Extend Homework Assignment to Cover New Ground
Final Submission for Annotation Project

• Annotation Specifications
• Annotation Output
• Write-up including:
 – Comparison with previous work
 – Summary of specifications
 – Annotation and evaluation procedures
 – Evaluation Results
Annotation Projects

• Write Specifications & Annotate Documents
 – Find related work and distinguish your approach
 – Find one annotator in addition to yourself, so it is possible to evaluate
 • InterAnnotator Agreement
 – Kappa = \(\frac{\text{Percent (Actual Agreement)} - \text{Prob (Chance Agreement)}}{1 - \text{Prob (Chance Agreement)}} \)
 • Score (precision, recall, f-measure) against a gold standard
 – Multiply annotate and adjudicate to create sample
 – Possible deals:
 • annotate for each other
 • Programmer uses annotation for program project

• Design and Implement Annotation Project using Amazon Turk
 – Figure out a way to use very simple annotation
 – Design a task for Amazon Turk and Run it
 – May cost you a little money ($50 buys a lot of annotation)
Sample Annotation Projects

• Apply a known type of Annotation (NE, POS, Chunking, semantic role labeling) to a new domain of text: web data, technical data, a new language, etc.

• Develop specifications and annotate new classes of NEs, Relations, or Events

• Develop specifications and annotate an interesting phenomenon:
 – quantifier scope
 – sentiment (your version)
 – Idiomatic expressions
Baseline for Annotation Projects

• As an initial experiment, annotate a simpler version of your task to see if you can get reasonable agreement.

• Try Collapsing distinctions in your annotation for purposes of evaluation
 – Example: 2 sense of the adverb *logically*
 • *Logically, they should be able to do it.* [VIEWPOINT]
 • *They should be able to solve the problem logically* [MANNER]
 – If collapsing these sense for evaluation purposes, gives you a better agreement score, you might report both results.

• Try Only annotating a subclass of your data or part of your specs
 – Example1: You are annotating instances of attacks reported in blogs, along with arguments of the attacks (attacker and victim)
 • Initially only annotate sentences containing a limited number of attack words (e.g., *attack, harm, kill, ...*)
 – Example2: You are annotating attack and movement events in news
 • Initially, only annotate *attack* events
Crowd Sourced Annotation: Getting Good Results

- Detailed Specifications (true for any annotation)
- Simplify Task (not expert annotators)
- Use a qualification test (keep out trolls)
- Do short tests of your task
 - Fix task until you are satisfied with results
 - Then run on larger amount of data
- Multiply annotate data and merge, e.g.,
 - 30 groups of 25 examples = 750
 - Each group of 25 is annotated 3 times = 2250
 - 10 annotators each annotate 225 examples (+ 25 qualifying examples)
 - Sample merging strategy: voting
 - If binary classification, always can pick one answer
Final Submission for a Lexicon Project

• The Lexicon Created or Acquired
• Code for any programming components
• If manually created, similar components as with annotation project
• If automatically acquired, similar components as programming project
• Write-up including comparison to previous work and evaluation.
Lexicon Projects

• Motivation
 – What would your lexicon help achieve?
 – How would you test this?

• Strategy for Constructing Lexicon
 – Word List:
 • I can provide large lists of English lemmas (and morphological variants)
 • Lists can be derived from corpora, sorted by frequency
 – Automatic Methods:
 • Even heuristics that are 50% accurate can save time, e.g., for finding a list of place names, this pattern could help: `grep -E 'going to [A-Z][A-Za-z]*'`, especially when applied to a very large corpus (e.g., via a webcrawler)
 – Lexicographer Interfaces (may be programs online)
 • Bad idea to have lexicographers type in features
 – Write up and Test Specifications: similar to annotation

• Evaluation
 – Consistency (like annotation)
 – Demonstrate that information in the lexicon can be used for some application
 • Perhaps with a very primitive program (think proof of concept)
Existing & Future Lexicons

• Existing Lexicons and Databases
 – Comlex Syntax: Syntactic & Semantic
 – Nomlex-Plus, ADJADV: Paraphrase
 – WordNet: Word Sense
 – CIA FactBook: Gazetteer

• New Genres Where Lexicons Could Help:
 – Twitter, and other social media
 – Technical domains
 • Science, Technology, Business, Law, Trades
 • Games, Hobbies, Collectables, ...
Survey Papers

• **Goal**: characterize the benefits/drawbacks of different techniques and to say something about the state of the art or use research to propose and motivate ambitious project.

• **Research Areas**: Machine Translation, Summarization, Question Answering, Sentiment Analysis, Information Extraction, Reference Resolution, Predicate Argument Structure, …

• **Proposal should include** an abstract, a description of some preliminary work that you have read, a list of articles that you intend to read and an enumeration of your research goals.

• I can recommend some articles/books to get you started
Other Project Ideas

• Example: An Evaluation Paper
 – Propose a system for evaluation and implement it.
 – Evaluate the output of several open source systems using your measure.
 – Compare your measure to previous work

• Any idea that you come up for a project should have most of the following components:
 – A way of succeeding if your original idea turns out to be overly ambitious
 – A method for evaluating your results
 – Citing previous work
 – Major components that are part of Natural Language Processing
Use and Cite Previous Work

• Read and cite previous papers
• Run existing NLP programs to create input to your system
 – You could contribute one piece to a larger pipeline
• Use corpora, annotation and lexicons created by others as input, training/test/dev data, etc.
• Examples:
 – Parsers or treebanks for annotating pronoun coreference
 – POS tagger, pre-tagged data, existing lexicons
 • Annotation or lexicon of finer grained classes
 • Example: Subclasses of adjectives or adverbs.
The Wall Street Journal Penn Treebank

• Upenn: Trees, POS tags, Noun Groups
 – Some available in HW, more possible

• BBN:
 – NE – Inline annotation – you can convert it to one token per line or use it as is
 • NYUClasses Resources: BBN-NE.tgz
 – Coreference – marks pronoun coreference – there is probably a bit of corpus preparation to make this work
 • Can be made available
Downloadable Tasks with Annotated Corpora (for Testing and/or Training)

- Corpora for Drug-Drug Interaction
 - http://labda.inf.uc3m.es/DrugDDI/DrugDDI.html
- WePS – searching for entities on the Web
- Spanish Corpus with POS tags
 - http://www.comp.lancs.ac.uk/linguistics/crater/spanishfiles.html
Some Downloadable Corpora

• The Open American National Corpus
 – http://www.anc.org/OANC/
 – A variety of different types of data
 – A limited amount of manually annotated data
 – Automatically annotated data from various programs
 – Most annotation is offset annotation

• The Singapore SMS corpus

• Wikipedia XML

• Tweet Corpus (for sentiment)
 – http://help.sentiment140.com/for-students/

• A list of influential corpora in NLP:
 – http://www.lancaster.ac.uk/staff/xiaoz/papers/corpus%20survey.htm
Some Lexicons

• COMLEX – available through NYUClasses Resources
 – COMNOM.tgz (most uptodate version)
• NOMLEX and related dictionaries
 • “Those Other Dictionaries” describe the dictionaries
 – “directory linked here” brings you to directory of dictionaries and other resources
 • Everything as one archive file (Nombank 1.0 Release)
• WordNet: http://wordnet.princeton.edu/
• FrameNet: https://framenet.icsi.berkeley.edu/fndrupal/
• CMU Pronunciation Dictionary: http://www.speech.cs.cmu.edu/cgi-bin/cmudict
• Subjectivity Lexicon (and sentiment corpus)
 – http://mpqa.cs.pitt.edu/
• CIA factbook:
Tools and Packages

- Machine Learning Packages, e.g.,
 - OpenNLP (https://opennlp.apache.org/)
 - used for HW6
 - http://textminingonline.com/tag/maxent-classifier

- Some advanced software may be challenging to install/use
 - Moses (open source, state-of-the-art MT system)
 - http://www.statmt.org/moses/
 - Parsers
 - http://www.isi.edu/publications/licensed-sw/fanseparser/

- I may be able to help you find a particular type of software
Other Sources for Final Projects

• It is possible to extend a homework assignment into a final project
 – Generalize, Add techniques, etc.
 – Example: POS tagging for Chinese (LDC2007T36.tgz on NYUClasses)

• Website with ML tasks: www.kaggle.com
 – Example: Predict Rotten Tomatoes scores: negative, somewhat negative, neutral, somewhat positive, positive
 https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews

• Shared Tasks – CONLL, MUC, ACE, …
 – Read about the task you are interested first
 – Download if it is open source
 – I can get you access to some (but not all) of the licensed data
Other LDC Corpora

• https://catalog.ldc.upenn.edu/
• Go to LDC catalog
 – For the first time, you can obtain anything in the LDC catalog through the NYU Library
 – Before the Library took over, I could provide access to only a subset of the material
 – Since this is a new process, I suggest investigating it earlier, rather than later, so I can help it go smoothly
 – Contact at the library:
 • Scott A Collard
 • Email: scott.collard at nyu.edu
NYUClasses Resources: Available for Download

• ACE Corpus
 – ACE-events.tgz and plain-ACE-txt.tgz

• Named Entity tags on Penn Treebank
 – BBN-NE.tgz

• Chinese Penn Treebank
 – LDC-2007T36.tgz

• COMLEX Syntax
 – COMNOM.tgz

• More info if you download and need clarification
Web of Law Corpus

- Text versions of 64K supreme court decisions, along with processed versions of the text (sentence split, POS tagged, and several other types of analysis)
- Part of my current research
- There are students currently working on this. Preliminary Information is provided at these links:
 - Files: https://nlp.cs.nyu.edu/meyers/web_of_law.html
 - Programs: https://github.com/AdamMeyers/Web-of-Law
Consider Turning Your Paper into a Conference Paper

• It is Possible that a Really Good Paper could form the basis of a Conference Paper
• If applicable, I will help you find a good venue: conference or workshop
• A published paper can be a major factor in getting into a good graduate program, particularly a PhD program
• Note that most publications have multiple authors, i.e., collaboration may help
Please Ask

• If you need help finding resources or citations relevant to your project, please send me email.
The Final Project Proposal

• Counts as a Homework Assignment
• http://cs.nyu.edu/courses/fall17/CSCI-UA.0480-006/homework7.html