Shortest paths in a DAG

Let $G = (V, E)$ be a DAG with edge weights $wt : E \rightarrow \mathbb{R}$ (edge weights may be negative)

Linear time (i.e., $O(|V| + |E|)$) algorithm for Single Destination variant (reverse G for Single Source variant)

Given G as above and $t \in V$, find shortest paths from all nodes $v \in V$ to t

Assume $V = [0..n)$ and let $TopSort[0..n)$ be an array that lists vertices in a topological order

if $u \rightarrow v$ is an edge, then u appears before v in the $TopSort$ array
We will compute \(d[\nu] = \text{weight of shortest path from } \nu \text{ to } t \text{ for all } \nu \in V \)

Idea:

\[
d[u] = \min \{ \text{wt}(u, \nu) + d[\nu], \text{wt}(u, \nu') + d[\nu'] \}
\]

Algorithm:

for \(\nu \) in \([0..n]\) do: \(d[\nu] \leftarrow \infty \)
\(d[t] \leftarrow 0 \)

for \(i \) in reverse \([0..n]\)
 \(u \leftarrow \text{TopSort}[i] \)
 for each \(\nu \in \text{Successor}(u) \) do
 if \(\text{wt}(u, \nu) + d[\nu] < d[u] \) then
 \(d[u] \leftarrow \text{wt}(u, \nu) + d[\nu] \)
Breadth first search (BFS)

Input: a graph $G = (V, E)$, and a node $s \in V$

- The graph is *unweighted*
- Equivalently, all edges have weight 1

Outputs:

- the “shortest distance” array d, indexed by V, so that $d[v] = \text{length of shortest path from } s \text{ to } v$
- a “breadth first search” tree T, represented as an array π indexed by V

$$\pi[v] = u \text{ means } u \text{ is } v\text{’s parent in } T$$

the root T is s, and paths in T are shortest paths in G
Basic Idea:

place \(s \) in bucket 0
for \(i \) in \([0 \ldots n)\) do
 for each \(u \) in bucket \(i \) do
 for each \(\nu \in \text{Successor}(u) \) do
 if \(\nu \) is not already in some bucket then
 place \(\nu \) in bucket \(i + 1 \)

Claim: a node is placed in bucket \(i \) \(\iff \) it is at distance \(i \) from \(s \)

- If \(\delta(s, \nu) = i + 1 > 0 \), then \(\nu \) is the successor of some node \(u \) with \(\delta(s, u) = i \)

 - Consider a shortest path from \(s \) to \(\nu \):
 \[
 s \xrightarrow{ } u \rightarrow \nu
 \]
 \[
 \begin{array}{c}
 \text{\(i \)} \\
 \text{\(i+1 \)}
 \end{array}
 \]

 - The path \(s \xrightarrow{ } u \) must be a shortest path from \(s \) to \(u \) (otherwise, we could find an even shorter path to \(\nu \))
Observations:

• Instead of n buckets, we can just use a single FIFO queue.

• The nodes in the front of the queue are all the unexamined nodes in bucket i.

• The nodes in the rear of the queue are all the nodes in bucket $i + 1$.
Algorithm \textit{BFS}(G, s):

\begin{itemize}
\item for each \(v \in V \)
 \begin{itemize}
 \item \text{Color}[v] \leftarrow \text{white} \quad \text{// undiscovered}
 \item \text{d}[v] \leftarrow \infty, \text{\pi}[v] \leftarrow \text{Nil}
 \end{itemize}
\item \text{Color}[s] \leftarrow \text{gray} \quad \text{// discovered}
\item \text{d}[s] \leftarrow 0, \text{\pi}[s] \leftarrow \text{Nil}
\end{itemize}

\text{Q} \leftarrow \text{NewQueue()} \quad \text{// a FIFO queue}
\text{Q.enqueue}(s)

\text{while not Q.empty()} \text{ do}
 \begin{itemize}
 \item \text{u} \leftarrow \text{Q.dequeue()}
 \item for each \(v \in \text{Successor}(u) \) do
 \begin{itemize}
 \item if \text{Color}[v] = \text{white} then
 \begin{itemize}
 \item \text{Color}[v] \leftarrow \text{gray} \quad \text{// discovered}
 \item \text{d}[v] \leftarrow \text{d}[u] + 1, \text{\pi}[v] \leftarrow u
 \item \text{Q.enqueue}(v)
 \end{itemize}
 \end{itemize}
 \end{itemize}
 \text{Color}[u] \leftarrow \text{black} \quad \text{// finished}
Example:

BFS Tree:
Running time:

- Each node enqueued at most once (by coloring)
- Each node dequeued at most
- Each adjacency list scanned at most once
- ∴ Running time = $O(|V| + |E|)$
Recap: Single source / destinations shortest paths

Assume $G = (V, E)$, with $n := |V|$ and $m := |E|$

- No negative edges: $O((n + m) \log n)$ — Dijkstra
- Bounded, non-negative, integer edge weights: $O(n + m)$ — Dijkstra variant (or BFS)
- DAG with arbitrary edge weights: $O(n + m)$
All pairs shortest paths

One approach:

- Run a single-source shortest path algorithm from each vertex
 - Dijkstra (no negative edges): $O(n \times (n + m) \log n)$, or $O(n^3)$

Floyd-Warshall Algorithm:

- no negative cycles
- running time $O(n^3)$
• Number the vertices \([1 \ldots n]\)

• For a path \(p = \langle v_0, v_1, \ldots, v_{l-1}, v_l \rangle\), we say that \(v_1, \ldots, v_{l-1}\) are intermediate vertices

• For \(k\) in \([0 \ldots n]\), let \(\delta^{(k)}(i, j) := \text{length of the shortest path from } i \text{ to } j \text{ whose intermediate vertices belong to } [1 \ldots k]\)

\[
\delta^{(0)}(i, j) = \begin{cases}
0 & \text{if } i = j; \\
\text{wt}(i, j) & \text{if } i \neq j \text{ and } (i, j) \in E \\
\infty & \text{otherwise}
\end{cases}
\]

• For \(k > 0\)

\[
\delta^{(k)}(i, j) = \min \left(\delta^{(k-1)}(i, j), \delta^{(k-1)}(i, k) + \delta^{(k-1)}(k, j) \right)
\]
Straightforward implementation:

- Use a 3D array $D[i, j, k]$

 $$D[i, j, 0] \leftarrow \delta^{(0)}(i, j) \text{ for } i, j \text{ in } [1..n]$$

 for k in $[1..n]$ do
 for i in $[1..n]$ do
 for j in $[1..n]$ do
 $$d' \leftarrow D[i, k, k - 1] + D[k, j, k - 1]$$
 if $d' < D[i, j, k - 1]$
 then $D[i, j, k] \leftarrow d'$
 else $D[i, j, k] \leftarrow D[i, j, k - 1]$

- Running time: $O(n^3)$
- Space: $O(n^3)$
Improving the space requirement:

- Since $D[\cdot, \cdot, k]$ depends only on $D[\cdot, \cdot, k-1]$, we can obviously get by with just two 2D arrays.

- In fact, we can get by with just a single array, with updates “in place”

 Justification:
 - $\delta^{(k)}(i, k) = \delta^{(k-1)}(i, k)$
 - $\delta^{(k)}(k, j) = \delta^{(k-1)}(k, j)$

- Why? No negative cycles

- So in the formula:

 $\delta^{(k)}(i, j) = \min(\delta^{(k-1)}(i, j), \delta^{(k-1)}(i, k) + \delta^{(k-1)}(k, j))$

 these don’t change in loop iteration k
Improved implementation:

- Use a 2D array $D[i,j]$

$$D[i,j] \leftarrow \delta^{(0)}(i,j) \text{ for } i, j \text{ in } [1..n]$$

for k in $[1..n]$ do
 for i in $[1..n]$ do
 for j in $[1..n]$ do
 $$d' \leftarrow D[i,k] + D[k,j]$$
 if $d' < D[i,j]$
 then $D[i,j] \leftarrow d'$
Adding path recovery:

- Two arrays: $D[i, j], N[i, j]$
- $N[i, j] = \text{next vertex in the shortest path from } i \text{ to } j$

\[
D[i, j] \leftarrow \delta^{(0)}(i, j) \text{ for } i, j \text{ in } [1..n] \\
N[i, j] \leftarrow j \text{ for } i, j \text{ in } [1..n]
\]

for k in $[1..n]$ do
 for i in $[1..n]$ do
 for j in $[1..n]$ do
 $d' \leftarrow D[i, k] + D[k, j]$
 if $d' < D[i, j]$
 then $D[i, j] \leftarrow d'$
 $N[i, j] \leftarrow N[i, k]$

Printing a shortest path from u to v:

$x \leftarrow u$, print x
while $x \neq v$ do: $x \leftarrow N[x, v]$, print x