Shortest paths in a DAG

Let $G = (V, E)$ be a DAG with edge weights $\text{wt} : E \rightarrow \mathbb{R}$ (edge weights may be negative)

Linear time (i.e., $O(|V| + |E|)$) algorithm for Single Destination variant (reverse G for Single Source variant)

Given G as above and $t \in V$, find shortest paths from all nodes $v \in V$ to t

Assume $V = [0..n)$ and let $\text{TopSort}[0..n)$ be an array that lists vertices in a topological order

if $u \rightarrow v$ is an edge, then u appears before v in the TopSort array
We will compute \(d[\nu] = \text{weight of shortest path from } \nu \text{ to } t \text{ for all } \nu \in V\)

Idea:

\[
d[u] = \min \{ \text{wt}(u, \nu) + d[\nu], \\
\quad \text{wt}(u, \nu') + d[\nu'] \}
\]

Algorithm:

for \(\nu\) in \([0..n)\) do: \(d[\nu] \leftarrow \infty\)
\(d[t] \leftarrow 0\)

for \(i\) in reverse \([0..n)\)
\(u \leftarrow \text{TopSort}[i]\)
for each \(\nu \in \text{Successor}(u)\) do
if \(\text{wt}(u, \nu) + d[\nu] < d[u]\) then
\(d[u] \leftarrow \text{wt}(u, \nu) + d[\nu]\)
Breadth first search (BFS)

Input: a graph $G = (V, E)$, and a node $s \in V$

- The graph is *unweighted*
- Equivalently, all edges have weight 1

Outputs:

- the “shortest distance” array d, indexed by V, so that $d[v] =$ length of shortest path from s to v
- a “breadth first search” tree T, represented as an array π indexed by V

$\pi[v] = u$ means u is v’s parent in T

the root T is s, and paths in T are shortest paths in G
Basic Idea:

place s in bucket 0
for i in $[0..n)$ do
 for each u in bucket i do
 for each $v \in \text{Successor}(u)$ do
 if v is not already in some bucket then
 place v in bucket $i + 1$

Claim: a node is placed in bucket $i \iff$ it is at distance i from s

• If $\delta(s, v) = i + 1 > 0$, then v is the successor of some node u with $\delta(s, u) = i$
 ◦ Consider a shortest path from s to v:

 \[S \longrightarrow u \rightarrow v \]
 \[\underbrace{\text{i}}_{i+1} \]

• The path $s \longrightarrow u$ must be a shortest path from s to u
 (otherwise, we could find an even shorter path to v)
Observations:

- Instead of n buckets, we can just use a single FIFO queue
- The nodes in the front of the queue are all the unexamined nodes in bucket i
- The nodes in the rear of the queue are all the nodes in bucket $i + 1$
Algorithm $BFS(G, s)$:

for each $v \in V$

 $\text{Color}[v] \leftarrow \text{white}$ // undiscovered
 $d[v] \leftarrow \infty$, $\pi[v] \leftarrow \text{Nil}$

$\text{Color}[s] \leftarrow \text{gray}$ // discovered
$d[s] \leftarrow 0$, $\pi[s] \leftarrow \text{Nil}$

$Q \leftarrow \text{NewQueue}()$ // a FIFO queue
$Q.\text{enqueue}(s)$

while not $Q.\text{empty}()$ do

 $u \leftarrow Q.\text{dequeue}()$

 for each $v \in \text{Successor}(u)$ do

 if $\text{Color}[v] = \text{white}$ then
 $\text{Color}[v] \leftarrow \text{gray}$ // discovered
 $d[v] \leftarrow d[u] + 1$, $\pi[v] \leftarrow u$
 $Q.\text{enqueue}(v)$

 $\text{Color}[u] \leftarrow \text{black}$ // finished
Example:
Running time:

- Each node enqueued at most once (by coloring)
- Each node dequeued at most
- Each adjacency list scanned at most once
- \(\therefore \) Running time = \(O(|V| + |E|) \)
Recap: Single source / destinations shortest paths

Assume $G = (V, E)$, with $n := |V|$ and $m := |E|$

- No negative edges: $O((n + m) \log n)$ — Dijkstra
- Bounded, non-negative, integer edge weights: $O(n + m)$ — Dijkstra variant (or BFS)
- DAG with arbitrary edge weights: $O(n + m)$
All pairs shortest paths

One approach:

• Run a single-source shortest path algorithm from each vertex
 ◦ Dijkstra (no negative edges): $O(n \times (n + m) \log n)$, or $O(n^3)$

Floyd-Warshall Algorithm:

• no negative cycles
• running time $O(n^3)$
• Number the vertices \([1 \ldots n]\)

• For a path \(p = \langle v_0, v_1, \ldots, v_{\ell-1}, v_\ell \rangle\), we say that \(v_1, \ldots, v_{\ell-1}\) are \textit{intermediate} vertices

• For \(k\) in \([0 \ldots n]\), let \(\delta^{(k)}(i, j) :=\) length of the shortest path from \(i\) to \(j\) whose intermediate vertices belong to \([1 \ldots k]\)

\begin{align*}
\delta^{(0)}(i, j) &= \begin{cases}
0 & \text{if } i = j; \\
\text{wt}(i, j) & \text{if } i \neq j \text{ and } (i, j) \in E \\
\infty & \text{otherwise}
\end{cases} \\
\delta^{(k)}(i, j) &= \min\left(\delta^{(k-1)}(i, j), \\
&\quad \delta^{(k-1)}(i, k) + \delta^{(k-1)}(k, j) \right)
\end{align*}
Straightforward implementation:

- Use a 3D array $D[i, j, k]$

 $D[i, j, 0] \leftarrow \delta^{(0)}(i, j)$ for i, j in $[1..n]$
 for k in $[1..n]$ do
 for i in $[1..n]$ do
 for j in $[1..n]$ do
 $d' \leftarrow D[i, k, k-1] + D[k, j, k-1]$
 if $d' < D[i, j, k-1]$
 then $D[i, j, k] \leftarrow d'$
 else $D[i, j, k] \leftarrow D[i, j, k-1]$

- Running time: $O(n^3)$
- Space: $O(n^3)$
Improving the space requirement:

- Since $D[\cdot, \cdot, k]$ depends only on $D[\cdot, \cdot, k-1]$, we can obviously get by with just two 2D arrays.
- In fact, we can get by with just a single array, with updates “in place”.

Justification:

- $\delta^{(k)}(i, k) = \delta^{(k-1)}(i, k)$
- $\delta^{(k)}(k, j) = \delta^{(k-1)}(k, j)$
- Why? No negative cycles.
- So in the formula:

$$\delta^{(k)}(i, j) = \min(\delta^{(k-1)}(i, j), \delta^{(k-1)}(i, k) + \delta^{(k-1)}(k, j))$$

these don’t change in loop iteration k
Improved implementation:

- Use a 2D array $D[i,j]$

\[
D[i,j] \leftarrow \delta^{(0)}(i,j) \text{ for } i, j \text{ in } [1..n] \\
\text{for } k \text{ in } [1..n] \text{ do} \\
\quad \text{for } i \text{ in } [1..n] \text{ do} \\
\quad \quad \text{for } j \text{ in } [1..n] \text{ do} \\
\quad \quad \quad d' \leftarrow D[i,k] + D[k,j] \\
\quad \quad \quad \text{if } d' < D[i,j] \\
\quad \quad \quad \quad \text{then } D[i,j] \leftarrow d'
\]
Adding path recovery:

- Two arrays: $D[i, j], N[i, j]$
- $N[i, j] =$ next vertex in the shortest path from i to j

\[
D[i, j] \leftarrow \delta^{(0)}(i, j) \text{ for } i, j \text{ in } [1..n]
\]

\[
N[i, j] \leftarrow j \text{ for } i, j \text{ in } [1..n]
\]

for k in $[1..n]$ do
 for i in $[1..n]$ do
 for j in $[1..n]$ do
 \[
d' \leftarrow D[i, k] + D[k, j]
 \]
 if $d' < D[i, j]$
 then \[
 D[i, j] \leftarrow d'
 \]

 \[
 N[i, j] \leftarrow N[i, k]
 \]

Printing a shortest path from u to v:

$x \leftarrow u$, print x
while $x \neq v$ do: $x \leftarrow N[x, v]$, print x