Shortest Paths

The problem:

- Let $G = (V, E)$ be a directed graph
- Edge weights $\text{wt} : E \to \mathbb{R}$
- Convention: $\text{wt}(u, v) := \infty$ if $(u, v) \notin E$
- The weight of a path $p = \langle v_0, v_1, \ldots, v_k \rangle$:
 \[\text{wt}(p) := \sum_{i=1}^{k} \text{wt}(v_{i-1}, v_i) \]
- The shortest path weight from u to v:
 \[\delta(u, v) := \min\{\text{wt}(p) : p \text{ is a path from } u \text{ to } v\} \]
Some extremes:

• If there is no path from \(u \) to \(v \), then \(\delta(u, v) := \infty \)

• If there is a path from \(u \) to \(v \) that contains a negative weight cycle, then \(\delta(u, v) := -\infty \)

Cycles:

• A shortest path cannot contain either:
 ○ a negative weight cycle, or
 ○ a positive weight cycle

 but may contain a zero-weight cycle

• If there is a shortest path:
 ○ there is always a shortest path with no cycles
 ○ there is always a shortest path with \(\leq |V| - 1 \) edges
Currency conversion: an application with negative edge weights

We have n currencies (or other financial instruments), which are represented as vertices in a graph.

Suppose we can convert 1 unit of currency u to x units of currency v

we make an edge $u \rightarrow v$ with weight $-\log(x)$

Consider a path of currencies $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k$ with edge weights $-\log(x_1), \ldots, -\log(x_k)$

The path weight is $-\sum_i \log(x_i) = -\log(x_1 \cdots x_k)$ which is minimized when the exchange rate $x_1 \cdots x_k$ is maximized.

Negative weight cycles can be very interesting!
An arbitrage opportunity

\[0.741 \times 1.366 \times 0.995 = 1.00714497\]

A negative cycle that represents an arbitrage opportunity

\[-ln(0.741) - ln(1.366) - ln(0.995)\]

\[0.2998 - 0.3119 + 0.0050 = -0.0071\]

replace each weight \(w\) with \(-ln(w)\)
Shortest Path Variations:

- Single source
- Single destination
- Single pair
- All pairs
Single source shortest paths

Goal: compute shortest paths from a given node \(s \) to all other nodes

We will calculate \(d[v] = \delta(s, v) \) for all \(v \in V \)

We will also calculate an implicit “shortest path tree”:

- \(\pi[v] = \text{predecessor of } v \text{ on the tree path from } s \text{ to } v \)

Code to print a shortest path to \(v \), in reverse:

```plaintext
while \( v \neq s \) do: print \( v \), \( v \leftarrow \pi[v] \)
```
A shortest path tree:
Dijkstra’s Algorithm

Assumption: No negative edge weights

Idea:

Beginning at s, we grow a shortest path tree, edge by edge

We will use a “greedy” strategy, choosing the edge that yields a new path of least weight
To see why this strategy works, we need a definition:

Definition (Cluster)

A subset \(C \subseteq V \) is called a cluster about \(s \) if

- \(s \in C \), and
- \(\delta(s, u) \leq \delta(s, v) \) for all \(u \in C \) and \(v \in V \setminus C \)

Intuition: nothing outside the cluster is closer to \(s \) than anything inside the cluster.
Definition (Cluster Path / Cluster Distance)

For cluster C about s and $v \in V \setminus C$, define a C-path to v as a path that

- starts at s,
- ends at v,
- and (except for v) contains only nodes in C.

Define $D_C(v) := \min \left(\{ \text{wt}(p) : p \text{ is a } C\text{-path to } v \} \cup \{\infty\} \right)$
Lemma (Cluster Properties)

1) \(\{s\} \) is a cluster

2) If \(C \) is a cluster, and \(v^* \in V \setminus C \) with minimal \(D_C(v^*) \), then \(\delta(s, v^*) = D_C(v^*) \) and \(C \cup \{v^*\} \) is also a cluster

(1) is clear

For (2), we will prove (below)

Claim: \(\delta(s, v) \geq D_C(v^*) \) for all \(v \in V \setminus C \)

First, apply claim with \(v := v^* \):

\[
\delta(s, v^*) \geq D_C(v^*)
\]

- \(\delta(s, v^*) \leq D_C(v^*) \) \([D_C(v^*) \text{ is the weight of some path}]\)
- \(\therefore \delta(s, v^*) = D_C(v^*) \)

Second, apply claim with arbitrary \(v \in V \setminus C \):

\[
\delta(s, v) \geq D_C(v^*) = \delta(s, v^*)
\]

which implies that \(C \cup \{v^*\} \) is a cluster
Proof of Claim: $\delta(s, v) \geq D_C(v^*)$ for all $v \in V \setminus C$

We may assume $\delta(s, v) \neq \infty$

Let $s = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_\ell = v$ be a shortest path from s to v.

Let k be the *smallest* index such that $v_k \notin C$

We have:

$$
\delta(s, v) = \text{wt}((v_0, \ldots, v_\ell)) \quad \text{[it's a shortest path]}
\geq \text{wt}((v_0, \ldots, v_k)) \quad \text{[wt ≥ 0]}
\geq D_C(v_k) \quad \text{[def'n of $D_C(v_k)$]}
\geq D_C(v^*) \quad \text{[def'n of v^*]}
$$
Algorithm:

// Initialization
for each \(v \in V \):
\[
d[v] \leftarrow \infty
\]
\[
\pi[v] \leftarrow Nil
\]
\[
d[s] \leftarrow 0
\]
\[
Q \leftarrow \{s\} \quad // \quad C \leftarrow \emptyset
\]

while \(Q \) not empty
\[
\text{remove } v^* \in Q \text{ with minimal } d[v^*] \quad // \quad \text{add } v^* \text{ to } C
\]

for each \(w \in \text{Successor}(v^*) \) do
\[
\text{if } d[v^*] + \text{wt}(v^*, w) < d[w] \text{ then}
\]
\[
\text{if } d[w] = \infty \text{ then add } w \text{ to } Q
\]
\[
d[w] \leftarrow d[v^*] + \text{wt}(v^*, w)
\]
\[
\pi[w] \leftarrow v^*
\]
Correctness follows from Cluster Properties:

- C is the set of all nodes that have been removed from Q

Loop invariants:

- for each $v \in C$: $d[v] = \delta(s, v)$
 - and π traces out a shortest path from s to v through nodes in C
- for each $v \in V \setminus C$: $d[v] = D_C(v)$

Special case: First loop iteration makes the cluster $C = \{s\}$

The general case: when we add v^* to C, the only nodes whose cluster distances can change are those in $\text{Successor}(v^*)$

- Let $C^* := C \cup \{v^*\}$, and consider a C^*-path $p : s \rightsquigarrow v \rightarrow w$
- If $v \neq v^*$, then $v \in C$ and $\text{wt}(p) \geq D_C(w)$
- So the only “interesting” C^*-paths are those of the form $s \rightsquigarrow v^* \rightarrow w$
Implementation: priority queue

- $n := |V|$ ExtractMin’s / Insert’s
- $m := |E|$ Decrease’s

Running Time:

- unsorted list: $O(n^2)$
 - $\text{ExtractMin}: O(n)$, $\text{Decrease} / \text{Insert}: O(1)$
- binary heap: $O((n + m) \log n)$
 - all operations: $O(\log n)$
- Fibonacci heap: $O(n \log n + m)$ (an advanced data structure)
A linear time special case:

- assume all edges weights are integers in the range $[0..B]$ for some small bound B
- we can implement Dijskstra in time $O(nB + m)$
- so for constant B, this is linear time

Some observations:

- nodes are removed from Q (and added to C) in order of increasing distance from s — why?
- the maximum distance from s of any node is $\leq (n - 1)B$ — why?
- the d-value of any node only decreases over time — why?
- the maximum d-value of any node in Q is $\leq nB$ — why?
An implementation (first attempt):

- Use an array $A[0..nB]$
- Entry $A[i]$ is a “bucket” of nodes in Q whose current d-value is i
- Initialize $next \leftarrow 0$

ExtractMin:

- while $A[next]$ empty do: increment $next$
- remove and return any node from bucket $A[next]$
- **Total cost:** $O(nB)$

Insert / Decrease:

- add/move node to appropriate bucket
- **Key fact:** the node will never land in a bucket of index smaller than $next$ — why?
- **Total cost:** $O(n + m)$
More observations:

• Let \(\text{min}(Q) := \) the smallest \(d \)-value for any node in \(Q \)

• when a node is added to \(Q \), it’s \(d \)-value is at most \(\text{min}(Q) + B \) — why?

• at any point in time, the \(d \)-value of any node in \(Q \) lies in \([\text{min}(Q), \text{min}(Q) + B]\) — why?

• In the above implementation, at any point in time, most buckets are empty:
 ◦ only entries \(\text{min}(Q), \ldots, \text{min}(Q) + B \) of \(A \) are non-empty

• A more space efficient representation:
 ◦ use a “circular array” \(A'[0..B] \) to represent the non-empty part of \(A \)
 ◦ \(A[i] \) is stored at \(A'[i \mod (B + 1)] \)
Problem solving by reduction

You are given a directed graph $G = (V, E)$ along with nodes $s, t \in V$

Edges are colored red and green

A path is called admissible if it contains at most 3 red edges

Determine if there is an admissible path from s to t, and if so, find one with the minimal number of green edges

Solve this problem by recasting it as a standard shortest path problem: running time $O(|V| + |E|)$.
Idea:

Make 4 copies of graph: $G^{(0)}, G^{(1)}, G^{(2)}, G^{(3)}$

Green edge $u \rightarrow v$ in G maps to $u^{(i)} \rightarrow v^{(i)}$ with edge weight 1

Red edge $u \rightarrow v$ in G maps to $u^{(i)} \rightarrow v^{(i+1)}$ with edge weight 0

Add 0-weight edges from each $t^{(i)}$ to new node t'

Find shortest path from $s^{(0)}$ to t'