Depth First Search (DFS)

An extremely simple, fast, recursive algorithm to visit all nodes reachable from a given node.

Let $G = (V, E)$ be a graph.

We assume adjacency list (i.e., sparse) representation.

Algorithm $BasicDFS(u)$:

// Visit u
mark u as “visited”
for each $v \in Successor(u)$ do
 // Explore the edge $u \rightarrow v$
 if v is not marked “visited” then
 $BasicDFS(v)$
BasicDFS: essential properties

Fact: BasicDFS runs in linear time — $O(|V| + |E|)$

Each node gets visited at most once
Each edge gets explored at most once
BasicDFS: essential properties

Fact: a node v in V gets marked “visited” \iff there is a path from (initial) u to v (i.e., v is “reachable” from u)

(\implies): obvious (only actual paths are explored)

(\impliedby): kind of obvious...

• consider a path $u = v_0 \rightarrow \cdots \rightarrow v_k$

• prove by induction on i that v_i gets marked visited...

 ◦ Base case: $i = 0 \checkmark$

 ◦ Assume for i and prove for $i + 1$: when we visit v_i, since $v_{i+1} \in \text{Successor}(v_i)$, we explore the edge $v_i \rightarrow v_{i+1}$ — either v_{i+1} has already been visited or we will visit it immediately
“Full” DFS: bells and whistles

We visit all the nodes in the graph
while some nodes are unvisited do:
 pick one and start “Basic DFS” from there

When we explore an edge \(u \rightarrow v \) and discover a new, unvisited node \(v \), we record the edge \(u \rightarrow v \)
 • these recorded edges comprise the “DFS forest” (which is acyclic)
 • every node \(v \) will have (at most) one predecessor \(\pi[v] = u \) in the “DFS forest”

We “timestamp” each node with a “discovery time” and a “finish time”

We “color” each node:
 • \textit{white}: undiscovered
 • \textit{gray}: visited but not finished (still on the call stack)
 • \textit{black}: finished
“Full” DFS

Algorithm $DFS(G)$:

for each $v \in V$ do: $Color[v] \leftarrow \text{white}$, $\pi[v] \leftarrow \text{Nil}$

$\text{time} \leftarrow 0$

for each $v \in V$ do

if $Color[v] = \text{white}$ then $\text{RecDFS}(v)$

Algorithm $\text{RecDFS}(u)$:

$Color[u] \leftarrow \text{gray}$

$d[u] \leftarrow ++\text{time}$ // discovery time

for each $v \in \text{Successor}(u)$ do:

if $Color[v] = \text{white}$ then

$\pi[v] \leftarrow u$, $\text{RecDFS}(v)$

$Color[u] \leftarrow \text{black}$

$f[u] \leftarrow ++\text{time}$ // finish time
DFS Forest:

- Tree edge
- Forward edge
- Back edge
- Cross edge
Running Time Analysis:

- Each node is discovered once
- Each edge is explored once
- Running time $= O(|V| + |E|)$
\(u \) discovered

- gray nodes are on run-time stack

\(u \) finished

Some Back, Forward, and Cross edges
For $u, v \in V$, “$u \subseteq v$” means that u lies below v in the DFS forest (possibly $u = v$), and “$u \subset v$” means u lies strictly below v (so $u \neq v$).

We can also write $u \supseteq v$ to mean $v \subseteq u$, i.e., u lies above v in the DFS forest.

Parenthesis Theorem

For all $u, v \in V$, exactly one of the following holds:

1. $[d[u], f[u]] \cap [d[v], f[v]] = \emptyset$, $u \not\subseteq v$, and $v \not\subseteq u$.
2. $[d[u], f[u]] \subseteq [d[v], f[v]]$, and $u \subseteq v$.
3. $[d[u], f[u]] \supseteq [d[v], f[v]]$, and $u \supseteq v$.
Classification of edge $u \to v$

- **Tree edge:** in the DFS forest ($u \subseteq v$)
 - v was *white* when $u \to v$ was explored;

- **Back edge:** $u \subseteq v$ (includes self loops)
 - v was *gray* when $u \to v$ was explored
 ($d[v] \leq d[u] < f[u] \leq f[v]$)

- **Forward edge:** a non-tree edge, $u \supseteq v$
 - v was *black* when $u \to v$ was explored, but *white* when u was discovered

- **Cross edge:** $u \notin v$ and $u \not\subseteq v$
 - v was *black* when $u \to v$ was explored, and *black* when u was discovered;
 - points “into the past” (right to left)
White Path Theorem

Let \(u, \nu \in V \).

\[u \supseteq \nu \iff \begin{cases} \text{at the time } u \text{ is discovered, there is} \\ \text{a path from } u \text{ to } \nu \text{ consisting only of} \\ \text{white nodes} \end{cases} \]

(\Rightarrow) Assume \(u \supseteq \nu \)
White Path Theorem

Let $u, v \in V$.

\[u \supseteq v \iff \begin{cases} \text{at the time } u \text{ is discovered, there is } \\ \text{a path from } u \text{ to } v \text{ consisting only of white nodes} \end{cases} \]

\[
\begin{align*}
\text{(⇒)} \quad \text{Let } u &= v_0 \to v_1 \to \cdots \to v_k = v \text{ be the white path} \\
\text{Claim: } u \supseteq v_i \text{ for all } i. \text{ Assume not, and let } i \text{ be minimal such that } u \not\supseteq v_i \text{ (} i > 0 \text{)} \Rightarrow \Leftarrow
\end{align*}
\]
Topological Sorting — Tarjan’s Algorithm

Algorithm $\textsc{DFSTopSort}$

- initialize an empty list
- Run DFS: When a node is painted \textit{black}, insert it at the front of the list
- If we ever discover a back edge, report that the graph is cyclic

So we output vertices on order of $\textit{decreasing}$ finishing time

As a bonus, if there is a cycle, we can actually print it out
Let’s get rid of the back edge

Arrange from highest to lowest finishing time
Lemma

G has a cycle \iff DFS produces a back edge

Proof:

- (\Leftarrow) A back edge trivially yields a cycle
• (\Rightarrow) Suppose G has a cycle C of vertices, and let v be the first vertex discovered in C:

By the White Path Theorem, u lies below v in the DFS forest

\therefore the edge $u \to v$ is a back edge
Theorem
Algorithm DFSTopSort is correct

Proof:

• Let \((u, v) \in E\)
• We want to show \(f[u] > f[v]\)
• Cases:
 ◦ \((u, v)\) is a tree edge: \(u \preceq v\) and \(d[u] < d[v] < f[v] < f[u]\)
 ◦ \((u, v)\) is a back edge: impossible, since \(G\) is acyclic
 ◦ \((u, v)\) is a forward edge: \(u \preceq v\) and \(d[u] < d[v] < f[v] < f[u]\)
 ◦ \((u, v)\) is a cross edge: \(f[v] < d[u] < f[u]\)
• QED