Dynamic Programming
Dynamic Programming

A way of speeding up certain recursive algorithms
Idea: don’t compute the same thing twice!

Example: Subset Sum

Given: positive integers a_1, \ldots, a_n, and a “target” value t

Question: is there a subset $I \subseteq \{1, \ldots, n\}$ such that

$$\sum_{i \in I} a_i = t?$$
We define a Boolean function

\[P(\langle a_1, \ldots, a_n \rangle, t) \]

Recursive evaluation (intuition): either we include the last index in the solution (and the target shifts) or we don’t

\[P(\langle a_1, \ldots, a_n \rangle, t) : \]

\[
\begin{align*}
\text{if } n = 0 \text{ then} \\
\quad \text{return } (t = 0) \\
\text{else} \\
\quad \text{// assume short circuit Boolean evaluation} \\
\quad \text{return } (a_n \leq t \text{ and } P(\langle a_1, \ldots, a_{n-1} \rangle, t - a_n)) \text{ or} \\
\quad P(\langle a_1, \ldots, a_{n-1} \rangle, t)
\end{align*}
\]
Running time is exponential in n

Recursion Tree:

$$\begin{array}{c}
\text{height} = n \\
\text{size of tree} = 2^n
\end{array}$$
Observe: the number of unique problem instances is at most \((n + 1)(t + 1)\), which is much smaller (assuming \(t\) is not too large)

Idea — “memoization”: maintain a table of results \(T[i, s]\), where \(i = 0 \ldots n\) and \(s = 0 \ldots t\)

Initially, \(T[i, s] = \bot\) for all \(i, s\)

As recursion proceeds, \(T[i, s]\) is set to \(P(\langle a_1, \ldots, a_i \rangle, s)\)

If a sub-problem has already been solved, fetch value from table, and skip recursion

Total time = \(O(nt)\)
\(P(\langle a_1, \ldots, a_n \rangle, t) : \)

\[
\text{if } T[n, t] \neq \bot \text{ then return } T[n, t] \\
\text{if } n = 0 \text{ then} \\
\quad T[n, t] \leftarrow (t = 0) \\
\text{else} \\
\quad T[n, t] \leftarrow (a_n \leq t \text{ and } P(\langle a_1, \ldots, a_{n-1} \rangle, t - a_n)) \text{ or } P(\langle a_1, \ldots, a_{n-1} \rangle, t) \\
\text{return } T[n, t]
\]
The “subproblem graph”

Iterative implementation: evaluate top to bottom / left to right
Iterative algorithm:

\[T[0, 0] \leftarrow true \]
for \(s \) in \([1..t]\) do
\[T[0, s] \leftarrow false \]

for \(i \) in \([1..n]\) do
 for \(s \) in \([0..t]\) do
 \[T[i, s] \leftarrow (a_i \leq s \text{ and } T[i - 1, s - a_i]) \text{ or } T[i - 1, s] \]
return \(T[n, t] \)
Iterative algorithm that returns a solution

\[T[0, 0] \leftarrow true, \ Sol[0, 0] \leftarrow emptyList() \]

for \(s \) in \([1..t]\) do
\[T[0, s] \leftarrow false \]

for \(i \) in \([1..n]\) do
 for \(s \) in \([0..t]\) do
 for \(i \) in \([1..n]\) do
 if \(a_i \leq s \) and \(T[i-1, s-a_i] \) then
 \[T[i, s] \leftarrow true \]
 \[Sol[i, s] \leftarrow append(Sol[i-1, s-a_i], i) \]
 else
 \[T[i, s] \leftarrow T[i-1, s] \]
 \[Sol[i, s] \leftarrow Sol[i-1, s] \]

return \((T[n, t], Sol[n, t]) \)
Example: Knapsack

An optimization version of Subset Sum

Given: positive integers a_1, \ldots, a_n, t, and ν_1, \ldots, ν_n

Question: find $I \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in I} a_i \leq t$ which maximizes $\sum_{i \in I} \nu_i$

Intuition:

- you have a knapsack with a weight capacity of t
- you have n items, where the ith item has weight a_i and value ν_i
- you want to pack the knapsack so as to maximize the value of the items in it, without exceeding its capacity
Recursive algorithm:

\(Opt(\langle a_1, \ldots, a_n \rangle, t, \langle v_1, \ldots, v_n \rangle) : \)

if \(n = 0 \) then
 return 0
else
 // \(val \) = value of best solution which does not include \(n \)th item
 \(val \leftarrow Opt(\langle a_1, \ldots, a_{n-1} \rangle, t, \langle v_1, \ldots, v_{n-1} \rangle) \)
 if \(a_n \leq t \) then
 // \(val' \) = value of best solution which includes \(n \)th item
 \(val' \leftarrow v_n + Opt(\langle a_1, \ldots, a_{n-1} \rangle, t - a_n, \langle v_1, \ldots, v_{n-1} \rangle) \)
 return max(\(val \), \(val' \))
 else
 return \(val \)

Same subproblem structure as subset sum
Iterative algorithm with solution:

for s in $[0..t]$ do
 $T[0, s] \leftarrow 0$, $Sol[0, s] \leftarrow EmptyList()$

for i in $[1..n]$ do
 for s in $[0..t]$ do
 if $a_i \leq s$ and $v_i + T[i-1, s-a_i] > T[i-1, s]$ then
 $T[i, s] \leftarrow v_i + T[i-1, s-a_i]$
 $Sol[i, s] \leftarrow append(Sol[i-1, s-a_i], i)$
 else
 $T[i, s] \leftarrow T[i-1, s]$
 $Sol[i, s] \leftarrow Sol[i-1, s]$

return $Sol[n, t]$
Example: Longest Common Subsequence

\[X = \langle x_1, \ldots, x_m \rangle \]
\[Z = \langle z_1, \ldots, z_k \rangle \]

\(Z \) is a subsequence of \(X \) is there exist indices \(i_1 < i_2 < \cdots < i_k \) such that \(x_{i_j} = z_j \) for \(j = 1 \ldots k \)

\[X = \langle a, b, c, b, d, a, b \rangle \]
\[Z = \langle b, c, d, b \rangle \]

Given sequences \(X \) and \(Y \), we say \(Z \) is a common subsequence of \(X \) and \(Y \) if \(Z \) is a subsequence of \(X \) and \(Z \) is a subsequence of \(Y \)
Example: \(X = \langle a, b, c, b, d, a, b \rangle \), \(Y = \langle b, d, c, a, b, a \rangle \)

\(Z = \langle b, c, b, a \rangle \)

\[X = \langle a, b, c, b, d, a, b \rangle \]
\[Y = \langle b, d, c, a, b, a \rangle \]

Problem: given \(X \) and \(Y \), find a Longest Common Subsequence (LCS) of \(X \) and \(Y \)

Notation: for \(X = \langle x_1, \ldots, x_m \rangle \) and \(i = 0 \ldots m \), we define \([X]_i := \langle x_1, \ldots, x_i \rangle \)
Key observation: Let $X = \langle x_1, \ldots, x_m \rangle$ and $Y = \langle y_1, \ldots, y_n \rangle$, and let $Z = \langle z_1, \ldots, z_k \rangle$ be an LCS of X and Y.

1. $x_m = y_n \implies z_k = x_m$ and $[Z]_{k-1}$ is an LCS of $[X]_{m-1}$ and $[Y]_{n-1}$

2. $(x_m \neq y_n) \land (z_k \neq x_m) \implies Z$ is an LCS of $[X]_{m-1}$ and Y

3. $(x_m \neq y_n) \land (z_k \neq y_n) \implies Z$ is an LCS of X and $[Y]_{n-1}$
Recursive algorithm LCS(X, Y):

if $m = 0$ or $n = 0$ then
 return emptyList()
else if $x_m = y_n$ then
 $Z' \leftarrow$ LCS($[X]_{m-1}, [Y]_{n-1}$)
 $Z \leftarrow$ append(Z', x_m)
 return Z
else
 $Z_1 \leftarrow$ LCS($[X]_{m-1}, Y$)
 $Z_2 \leftarrow$ LCS($X, [Y]_{n-1}$)
 if length(Z_1) > length(Z_2) then
 return Z_1
 else
 return Z_2
Correctness: observation and induction on $m + n$

- Assume algorithm is correct on all inputs of length $< m + n$
- Consider an LCS Z for the input
- Use induction hypothesis and observation to show that the algorithm constructs a solution of the same length as Z

There are only $(m + 1)(n + 1)$ distinct subproblems: $([X]_i, [Y]_j)$, for $i = 0 \ldots m$ and $j = 0 \ldots n$

Implement using a table — running time $= O(mn)$
The subproblem graph

Iterative implementation: evaluate top to bottom / left to right
Example: Optimum Weighted Trees

Definitions

Let $a_1 < a_2 < \cdots < a_n$

An *weight assignment* is a tuple

$$(w_1, \ldots, w_n)$$

of real numbers

Interpretation: for $i \in [1..n]$, w_i may be the probability of accessing a_i
Let T be a binary search tree for a_1, \ldots, a_n

- nodes labeled by keys a_i
- in-order traversal of tree yields a_1, \ldots, a_n

For a node v, let $d(v)$ denote its depth in the tree (level #, counting from zero)

Define the cost of T:

$$C := \sum_{i=1}^{n} w_i(1 + d(a_i))$$

If the weights are probabilities, C represents the expected number of comparisons to perform a lookup
Example:

\[C = 2 \cdot \frac{1}{8} + 3 \cdot \frac{1}{8} + 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} = 1.625 \]

Goal: given weights, construct a binary search tree that minimizes \(C \)
Consider a tree T with root a_k

The left subtree T_L contains a_1, \ldots, a_{k-1}

Let C_L be the cost of T_L

The right subtree T_R contains $a_{k+1} \ldots, a_n$

Let C_R be the cost of T_R

Let $S := \omega_1 + \cdots + \omega_n$

Key observation:

\[C = S + C_L + C_R \]

This means that if T is optimal, then C_L and C_R must be optimal
For $1 \leq k \leq \ell \leq n$, let

$$S(k, \ell) := w_k + \cdots + w_\ell$$

and define $C(k, \ell)$ to be the optimum cost for a_k, \ldots, a_ℓ

We have

$$S(k, \ell) = S(k, \ell - 1) + w_\ell$$

$$C(k, \ell) = S(k, \ell) + \min_{k \leq m \leq \ell} \left(C(k, m - 1) + C(m + 1, \ell) \right)$$

where

$$C(k, k - 1) := C(\ell + 1, \ell) := 0$$

and

$$S(k, k - 1) := 0$$
The subproblem graph:

nodes = $O(n^2)$, # edges per node = $O(n)$

\implies running time = $O(n^3)$
General dynamic programming strategies:

- Formulate a recursive solution
 - *Optimal substructure property*: an optimal solution can be constructed efficiently from optimal solutions of its subproblems
- Identify subproblems and dependencies
- Analyze structure of subproblem graph
- Iterative solution: determine a convenient “topological order” for the nodes in the graph
- Running time analysis: (usually) equals the size of the subproblem graph (# nodes + # edges)
Some subtleties:

- Must choose subproblems so that:
 - the correct/optimal solution can be reconstructed
 - for Subset Sum and Optimum Weighted Trees, this was easy
 - for LCS, some care was necessary to ensure the optimal solution was not missed
 - the number of distinct subproblems does not explode exponentially
Example: variations on “tiling”

We are given “target” \(t \in \{0, 1\}^* \), and several “tiles” \(s_1, \ldots, s_k \in \{0, 1\}^* \)

Can \(t \) be obtained by concatenating some of the tiles?

Variations:

- repetitions, given order (easy)
- repetitions, any order (easy)
- no repetitions, given order (easy)
- no repetitions, any order (???)