2-3 Trees
Dictionary: an abstract data type

A container that maps keys to values

Dictionary operations

• Insert
• Search
• Delete

Several possible implementations

• Balanced search trees
• Hash tables
2-3 trees

A kind of balanced search tree

Assume keys are totally ordered ($<$, $>$, $=$)

Assume n key/value pairs are stored in the dictionary

Time per dictionary operation is $O(\log n)$

Support of other useful operations as well
Basic structure: a tree

- Key/value pairs stored only at leaves (no duplicate keys)
- All leaves at the same level, with keys in sorted order
- Each internal node:
 - has either 2 or 3 children
 - has a “guide”: the maximum key in its subtree
Example
Let $h := \text{height of tree}$ \((\text{Recall: height} = \text{length of longest path from root to leaf})\)

Claim: $n \geq 2^h$

- Proof by induction on h
- Base case: $h = 0$, $n = 1$ ✓
- Induction step: $h > 0$, assume claim holds for $h - 1$
 - Tree has a root node, which has either 2 or 3 children
 - Each of these children is the root of a subtree, which itself is a 2-3 tree of height $h - 1$
 - By induction hypothesis, if the ith subtree has n_i leaves, then $n_i \geq 2^{h-1}$ [here, $i = 1 \ldots 2$ (or 3)]
 - $n = \sum_i n_i \geq \sum_i 2^{h-1} \geq 2 \cdot 2^{h-1} = 2^h$ ✓

Corollary: $h \leq \log_2 n$
Search(x): use guides

Search($x, p, height$): // Invoke as Search($x, root, h$)
if ($height > 0$) then
 if ($x \leq p\text{.guide}$) then
 return Search($x, p\text{.child0, height} - 1$)
 else if ($x \leq p\text{.child1\text{.guide}}$ or $p\text{.child2} = \text{null}$) then
 return Search($x, p\text{.child1, height} - 1$)
 else
 return Search($x, p\text{.child2, height} - 1$)
else
 if ($x = p\text{.guide}$) then
 return $p\text{.value}$
 else
 return null (or a default value)
Insert(x): Search for x, and if it should belong under p:

add x as a child of p (if not already present)

if p now has 4 children:

- split p into two two nodes, \(p_1 \) and \(p_2 \), each with two children

\[
\begin{array}{c}
\text{p} \\
\downarrow \\
w & y & z \\
\end{array}
\quad\rightarrow\quad
\begin{array}{c}
\text{p} \\
\downarrow \\
w & x & y & z \\
\end{array}
\quad\rightarrow\quad
\begin{array}{c}
p_1 \\
w & x \\
\end{array}
\quad\rightarrow\quad
\begin{array}{c}
p_2 \\
y & z \\
\end{array}
\]

- process p’s parent in the same way
- Special case: no parent — create new root, increasing height of tree by 1

Also need to update “guides” — easy

Time = \(O(\text{height}) = O(\log n) \)
Insert 5

5

Insert 21

5 21

Insert 8

5 8 21

Insert 63

5 8 21 63

Insert 69

5 8 21 63 69

Insert 10

5 8 10 21 63 69

Insert 69

5 8 21 63 69

Insert 10

5 8 10 21 63 69

Insert 69

5 8 21 63 69

Insert 10

5 8 10 21 63 69
Delete(x): Search for x, and if found under p:

remove x

if p now only has one child:

• if p is the root: delete p (height decreases by 1)

• if one of p’s adjacent siblings has 3 children: borrow one
• if none of p’s adjacent siblings has 3 children:
 ◦ one sibling q must have 2 children
 ◦ give p’s only child to q
 ◦ delete p
 ◦ process p’s parent
Delete 69

(give)

(borrow)

(delete root)
2-3 trees: summary

Assume n items in dictionary

Running time for lookup, insert, delete: $O(\log n)$ comparisons, plus $O(\log n)$ overhead

Space: $O(n)$ pointers

Note: in the literature, 2-3 trees usually store the guides *in the parent node*

- every node contains two guides (the guide for the third child is not needed)

A generalization: B-trees

- allow many children (which makes the height smaller)
- again, store guides in the parent node
- useful for high-latency memory (like hard drives)
Augmenting 2-3 trees

Idea: augment nodes with additional information to support new types of queries

Example: store # of items in subtree at each internal node

Queries:

- What is the kth smallest item?
- How many items are ≤ x?
Items may be marked with an attribute, say, “active”/“inactive”

Store a count of active items in subtree at each internal node

Queries:

• What is the kth smallest active item?
• How many active items are $\leq x$?
Attribute flipping

- Operation $\text{FlipRange}(x, y)$ flips all attribute bits of items in the range
- Assume attributes are bits
- Store an attribute bit at every node: internal nodes and leaves
 - “effective” value of the attribute is the XOR of all bits on path from root to leaf
• To perform FlipRange(x, y):
 ○ trace paths e, f to x, y
 ○ flip bits at x, y, and all roots of “internal” subtrees
2-3 Trees: Join and Split

Join(T_1, T_2) joins two 2-3 trees in time $O(\log n)$

Assume $\max(T_1) < \min(T_2)$

Assume T_i has height h_i for $i = 1, 2$

Case 1: $h_1 = h_2$

Time: $O(1)$
Case 2: $h_1 < h_2$

- Attach v as the left-most child of p
- If p now has 4 children, we split p, and proceed up the tree as in Insert

Time: $O(h_2 - h_1) = O(\log n)$

Case 3: $h_1 > h_2$ — similar
Split(T, x) \iff ($T_1 \leq x$, $T_2 \geq x$)

join from inside out
Analysis of “rejoin” step

Start with trees T_0, T_1, \ldots, T_k with $h_i = \text{height}(T_i)$

$h_0 \leq h_1 \leq \cdots \leq h_k$ [Monotonicity]

There are at most two trees of any given height (except there may be three of height 0) [Diversity]

Form new trees $T_0^*, T_1^*, \ldots, T_k^*$ with $h_i^* = \text{height}(T_i^*)$:

$T_0^* = T_0, \quad T_{i+1}^* = \text{Join}(T_i^*, T_{i+1})$

Total running time: $O(S)$, where

$$S = \sum_{i=0}^{k-1} (|h_{i+1} - h_i^*| + 1)$$
Claim: For $i = 0 \ldots k - 1$: $h_i^* \in \{h_i, h_i + 1\}$

From the claim, $|h_{i+1} - h_i^*| \leq h_{i+1} - h_i + 1$, and so

$$S \leq \sum_{i=0}^{k-1} (h_{i+1} - h_i + 2) = 2k + h_k - h_0 = O(\log n)$$

Example:

$\begin{array}{cccccccc}
0 & 0 & 0 & 1 & 1 & 2 & 3 & 3 & 5 \\
1^* & 0 & 1 & 1 & 2 & 3 & 3 & 5 \\
1 & 1 & 1 & 2 & 3 & 3 & 5 \\
2^* & 1 & 2 & 3 & 3 & 5 \\
2 & 2 & 3 & 3 & 5 \\
3^* & 3 & 3 & 5 \\
4^* & 3 & 5 \\
4 & 5 \\
5
\end{array}$

* = a “fresh” tree: root has only 2 children
We prove the claim by induction, but we need to prove more: “strengthening the induction hypothesis”

For $i = 0 \ldots k - 1$, we have

\[
\begin{align*}
P(i) & : h_i^* \in \{h_i, h_i + 1\} \\
Q(i) & : h_i^* > h_{i+1} \implies T_i^* \text{ fresh}
\end{align*}
\]

Base case: $i = 0$ (recall $h_0^* = h_0$) √

Induction step: assume $P(i), Q(i)$ and prove $P(i + 1), Q(i + 1)$, where $i = 0 \ldots k - 2$
Case I. Recall: \(T_{i+1} = \text{Join}(T^*_i, T_{i+1}) \)

1. Assume \(h_i^* \leq h_{i+1} \)

2. By logic of \textit{Join} and (1), either
 - \(h_i^* = h_{i+1} \) or
 - \(h_i^* = h_{i+1} + 1 \) and \(T^*_{i+1} \) is fresh

3. So \(P(i + 1) \) holds

4. To prove \(Q(i + 1) \):
 \[
 h_{i+1}^* > h_{i+2} \implies h_{i+1}^* > h_{i+1} \quad [\text{By monotonicity}]
 \]
 \[
 \implies T_{i+1}^* \text{ is fresh} \quad [\text{By (2)}]
 \]
Case II. \textit{Recall: } $T_{i+1} = \text{Join}(T_i^*, T_{i+1})$

1. Assume $h_i^* > h_{i+1}$

2. Must have $i > 0$

3. By $Q(i)$ and (1), T_i^* is fresh, and \textit{Join} logic implies $h_{i+1}^* = h_i^*$

4. We have
 \[
 h_i^* \leq h_i + 1 \quad [\text{By } P(i)]
 \]
 \[
 \leq h_{i+1} + 1 \quad [\text{By monotonicity}]
 \]
 \[
 \leq h_i^* \quad [\text{By (1)}]
 \]

 and so

 \[
 h_i^* = h_i + 1 = h_{i+1} + 1
 \]

5. By (4), we have $h_i = h_{i+1}$, and by diversity, monotonicity, and (2):

 \[
 h_{i+1} + 1 \leq h_{i+2}
 \]

6. Therefore:

 \[
 h_{i+1}^* = h_i^* = h_{i+1} + 1 \quad [\implies P(i + 1)]
 \]
 \[
 \leq h_{i+2} \quad [\implies Q(i + 1)]
 \]