CSCI-UA.0201
Computer System Organization
Homework Assignment 1
(Maximum grade: 40)

1. [1 point] What will happen if, in a C program, you assign a value to an array element whose index exceeds the size of array (e.g. A[15] = 8 while A is an array of 14 elements only)? You must specify what will be the compiler reaction, and, if the compilation is successful, what will happen during execution.

2. [1 point] In C, if you pass an array as an argument to a function, what actually gets passed?

3. [6 points] What will be the output of the following program? Explain how you reached your solution.

```c
#include<stdio.h>

int main()
{
    int a[5] = {5, 1, 15, 20, 25};
    int x, y, z;
    x = ++a[1];
y = a[1]++;
z = a[x++];
    printf("%d, %d, %d", x, y, z);
    return 0;
}
```

4. [1 point] In C, you have to free the memory you allocated. In language like Java, the garbage collector is doing this for you. State one advantage for each strategy.
5. [5 points] Assume we have the following memory map:

![Memory Map Diagram]

and we also have the following variable declarations:

```c
char x = 502; /* x will be stored in address 502 */
char * y;
```

Then we execute:
```c
ty = &x; /* Let's assume y is stored in address 10000 */
```

a. What is the value of: &x ?
b. What is the value of: y ?
c. What is the value of *y ?
d. What is the value of &y ?
e. What is the value of *(*y) ?

6. [2 points] Is there anything wrong with the following declaration? If so, what is it?

```c
struct emp
{
    int ecode;
    struct emp *e;
};
```
7. [2 points] Is there anything wrong with the following code? If so, what is it?
   ```
   struct emp
   {
   int ecode;
   struct emp e;
   };
   ```

8. [2 points] Assume we are executing the following program on a 64-bit machine:
   ```
   a) What will be the output?
   b) If we change p’s declaration to be: double * p; and use the type casting with malloc to be (double *), what will be the output?
   ```
   ```
   #include<stdio.h>
   #include<stdlib.h>
   int main()
   {
   int *p;
   p = (int *)malloc(20);
   printf("%d
", sizeof(p));
   free(p);
   return 0;
   }
   ```


10. We said in class that returning the address of a local variable is wrong.
 a) [1 point] Why is that?
 b) [1 point for 1st part, 4 points to justification] In the following code x is a local variable. Is there anything wrong with that code? Justify
    ```
    int * memory()
    {
    int * x;
    x = (int *)malloc(sizeof(int)* 1000);
    return x;
    }
    ```
11. We have seen that with \(n \) bits we have \(2^n \) patterns.
 a) [2 points] Why is the largest unsigned number that can be presented with \(n \) bits \((2^n-1) \) and not \(2^n \)?
 b) [2 points] Why is the largest positive number that can be presented in signed numbers \((+2^{n-1}-1) \) and not \((+2^{n-1}) \)?
 c) [1 point] For signed numbers of \(n \)-bits, do we have more negative numbers or more positive numbers?

12. Suppose we have this binary number: 10101010
 a) [1 point] Interpret this number as unsigned number and write the decimal equivalent.
 b) [1 point] Interpret this number as signed number and write the decimal equivalent.
 c) [1 point] Write the number in hexadecimal.
 d) [2 points] Does the hexadecimal presentation depend on whether the number is signed or unsigned? Why?