CSCI-UA.0201

Computer Systems Organization

Bits and Bytes:
Data Presentation

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com

Some slides adapted and modified from:
• Clark Barrett
• Jinyang Li
• Bryant and O’Hallaron
Bits and Bytes

• Representing information as bits
• How bits are manipulated?
• Integers
• Floating points
High-level language program (in C)

```c
swap(int v[], int k)
{
    int temp;
    temp = v[k];
    v[k] = v[k+1];
    v[k+1] = temp;
}
```

Compiler

Assembly language program

```
swap:
muli $2, $5, 4
add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31
```

Assembler

Binary machine language program:

```
000000000010100001000000000000000011000
00000000000000000100000000000000000001
1000111001100100010000000000000000000000
100111011110100010000000000000000000000
101011011110100010000000000000000000000
101011111110100010000000000000000000000
00000011111000000000000000000000000000
```

Our First Steps...
How do we represent data in a computer?

• How do we represent information using electrical signals?
• At the lowest level, a computer is an electronic machine.
• Easy to recognize two conditions:
 – presence of a voltage - we call this state “1”
 – absence of a voltage - we call this state “0”
Binary Representations

The diagram illustrates the binary representations at different voltage levels:
- 0.0V
- 0.5V
- 2.8V
- 3.3V

The transitions between voltage levels are depicted with arrows, indicating the binary states 0 and 1.
A Computer is a Binary Digital Machine

- Basic unit of information is the binary digit, or bit.
- Values with more than two states require multiple bits.
 - A collection of two bits has four possible states: 00, 01, 10, 11
 - A collection of three bits has eight possible states: 000, 001, 010, 011, 100, 101, 110, 111
 - A collection of \(n \) bits has \(2^n \) possible states.
George Boole

- (1815-1864)
- English mathematician and philosopher
- Inventor of **Boolean Algebra**
- Now we can use things like: AND, OR, NOT, XOR, XNOR, NAND, NOR,

Source: http://history-computer.com/ModernComputer/thinkers/Boole.html
Claude Shannon

- (1916-2001)
- American mathematician and electronic engineer
- His work is the foundation for using switches (i.e. transistors), and hence binary numbers, to implement Boolean function.

Source: http://history-computer.com/ModernComputer/thinkers/Shannon.html
So, we use transistors to implement logic gates. Logic gates manipulate binary numbers to implement Boolean functions. Boolean functions solve problems.

…. Simply Speaking … 😊
Encoding Byte Values

- **Byte = 8 bits**
 - Binary 00000000_2 to 11111111_2
 - Decimal: 0_{10} to 255_{10}
 - Hexadecimal 00_{16} to FF_{16}
 - Base 16 number representation
 - Every 4 bits \rightarrow 1 hexadecimal digit
 - Use characters '0' to '9' and 'A' to 'F'
 - Write $FA1D37B_{16}$ in C language as
 - `0xFA1D37B`
 - `0xfa1d37b`
Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

The most widely used.
Byte Ordering

• How are bytes within a multi-byte word ordered in memory?

• Conventions
 – Big Endian: Sun, PPC, Internet
 • Most significant byte has lowest address
 – Little Endian: x86
 • Most significant byte has highest address
Byte Ordering Example

• Big Endian
 – Most significant byte has lowest address

• Little Endian
 – Most significant byte has highest address

• Example
 – Variable x has 4-byte representation 0x01234567
 – Address given by &x is 0x100

Big Endian

Little Endian

<table>
<thead>
<tr>
<th></th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01</td>
<td>23</td>
<td>45</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>
Reading Byte-Reversed Listings

- **Disassembly**
 - Given the binary file, get the assembly

- **Example Fragment**

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

- **Deciphering Numbers**
 - **Value:** 0x12ab
 - **Pad to 32 bits (int is 4 bytes):** 0x000012ab
 - **Split into bytes:** 00 00 12 ab
 - **Reverse (little endian):** ab 12 00 00
Examining Data Representations

• Code to print Byte Representation of data

```c
void show_bytes(unsigned char * start, int len){
    int i;
    for (i = 0; i < len; i++)
        printf("%p\t%2x\n",start+i, start[i]);
    printf("\n");
}
```

printf directives:
%p: Print pointer
%x: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((unsigned char *) &a, sizeof(int));
```

Result (Linux):

```c
int a = 15213;
0x11ffffffcb8 0x6d
0x11ffffffcb9 0x3b
0x11ffffffcba 0x00
0x11ffffffcbb 0x00
```

Note: 15213 in decimal is 3B6D in hexadecimal
Representing Integers

Decimal: 15213
Binary: 0011 1011 0110 1101
Hex: 3 B 6 D

```java
int A = 15213;
long int C = 15213;
```
Representing Strings

• Strings in C
 – Represented by array of characters
 – Each character encoded in ASCII format
 • Standard 7-bit encoding of character set
 • Character ‘0’ has code 0x30
 – Digit i has code 0x30+i
 – String should be null-terminated

• Byte ordering not an issue
How to Manipulate Bits?
Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And

- \(A \& B = 1 \) when both \(A=1 \) and \(B=1 \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A&(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Or

- \(A | B = 1 \) when either \(A=1 \) or \(B=1 \)

| A | B | A|\(B \) |
|---|---|---------|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

Not

- \(\sim A = 1 \) when \(A=0 \)

<table>
<thead>
<tr>
<th>A</th>
<th>(\sim A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)

- \(A ^ \sim B = 1 \) when either \(A=1 \) or \(B=1 \), but not both

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A^(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Application of Boolean Algebra

• Applied to Digital Systems by Claude Shannon
 – 1937 MIT Master’s Thesis
 – Reason about networks of relay switches
 • Encode closed switch as 1, open switch as 0
 • Transistor
General Boolean Algebras

- Operate on Bit Vectors (e.g. an integer is a bit vector of 4 bytes = 32 bits)
 - Operations applied bitwise

 \[
 \begin{align*}
 &01101001 & \text{\&} & 01010101 \rightarrow 01000001 \\
 &01010101 & \mid & 01010101 \rightarrow 01111101 \\
 &01101001 & ^ & 01010101 \rightarrow 00111100 \\
 &01010101 & ~ & 01010101 \rightarrow 10101010
 \end{align*}
 \]
Bit-Level Operations in C

- Operations & , |, ~, ^ Available in C
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
- Examples (Char data type)
 - ~0x41 = 0xBE
 - ~01000001₂ = 10111110₂
 - ~0x00 = 0xFF
 - ~00000000₂ = 11111111₂
 - 0x69 & 0x55 = 0x41
 - 01101001₂ & 01010101₂ = 01000001₂
 - 0x69 | 0x55 = 0x7D
 - 01101001₂ | 01010101₂ = 01111101₂
Contrast: Logic Operations in C

• Contrast to Logical Operators
 & & , || , !
 • View 0 as “False”
 • Anything nonzero as “True”
 • Always return 0 or 1

• Examples (char data type)
 - !0x41 = 0x00
 - !0x00 = 0x01
 - !!0x41 = 0x01
 - 0x69 && 0x55 = 0x01
 - 0x69 || 0x55 = 0x01
 - p && *p (avoids null pointer access)
Boolean in C

• Did not exist in standard C89/90
• It was introduced in C99 standard
• You may need to use the following switch with gcc:
 gcc -std=c99 ...

#include <stdbool.h>

bool x;
x = false; // lower case
x = true;
Shift Operations

• **Left Shift**: \(x << y \)
 - Shift \(x \) left by \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

• **Right Shift**: \(x >> y \)
 - Shift \(x \) right \(y \) positions
 - Throw away extra bits on right
 - type 1: Logical shift
 - Fill with 0’s on left
 - type 2: Arithmetic shift (covered later)
 - Replicate most significant bit on right

• **Undefined Behavior**
 - Shift amount < 0 or \(\geq \) size of \(x \)
How to present Integers? (unsigned and signed)
Two Type of Integers

• Unsigned
 – positive numbers and 0

• Signed numbers
 – negative numbers as well as positive numbers and 0
Unsigned Integers

\[B_{2U}(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

1 0 1 1 1 1 0 1 1

128 64 32 16 8 4 2 1

187
Unsigned Integers

• An \(n \)-bit unsigned integer represents \(2^n \) values: from 0 to \(2^n - 1 \).

<table>
<thead>
<tr>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Unsigned Binary Arithmetic

- Base-2 addition - just like base-10
 - add from right to left, propagating carry

\[
\begin{array}{c}
10010 + 1001 \\
11011 \\
\end{array}
\quad
\begin{array}{c}
10010 + 1011 \\
11101 \\
\end{array}
\quad
\begin{array}{c}
1111 + 1 \\
10000 \\
\end{array}
\]

\[\text{carry}\]
What About Negative Numbers?

People have tried several options:

<table>
<thead>
<tr>
<th>Sign Magnitude</th>
<th>One's Complement</th>
<th>Two's Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 = +0</td>
<td>000 = +0</td>
<td>000 = +0</td>
</tr>
<tr>
<td>001 = +1</td>
<td>001 = +1</td>
<td>001 = +1</td>
</tr>
<tr>
<td>010 = +2</td>
<td>010 = +2</td>
<td>010 = +2</td>
</tr>
<tr>
<td>011 = +3</td>
<td>011 = +3</td>
<td>011 = +3</td>
</tr>
<tr>
<td>100 = -0</td>
<td>100 = -3</td>
<td>100 = -4</td>
</tr>
<tr>
<td>101 = -1</td>
<td>101 = -2</td>
<td>101 = -3</td>
</tr>
<tr>
<td>110 = -2</td>
<td>110 = -1</td>
<td>110 = -2</td>
</tr>
<tr>
<td>111 = -3</td>
<td>111 = -0</td>
<td>111 = -1</td>
</tr>
</tbody>
</table>

- **Issues:** balance, number of zeros, ease of operations
- **Which one is best? Why?**
Signed Integers

• With \(n \) bits, we have \(2^n \) distinct values.
 – assign about half to positive integers and about half to negative

• Positive integers
 – just like unsigned: zero in most significant (MS) bit
 \(00101 = 5 \)

• Negative integers
 – In two’s complement form

In general: a 0 at the MS bit indicates positive and a 1 indicates negative.
Two’s Complement

- Two’s complement representation developed to make circuits easy for arithmetic.
 - for each positive number \(X\), assign value to its negative \((-X)\), such that \(X + (-X) = 0\) with “normal” addition, ignoring carry out

\[
\begin{array}{c}
00101 \quad (5) \\
+ 11011 \quad (-5) \\
00000 \quad (0)
\end{array}
\quad \begin{array}{c}
01001 \quad (9) \\
+ 10111 \quad (-9) \\
00000 \quad (0)
\end{array}
\]
Two's Complement Signed Integers

- MS bit is sign bit.
- Range of an n-bit number: -2^{n-1} through $2^{n-1} - 1$.
 - The most negative number (-2^{n-1}) has no positive counterpart.

<table>
<thead>
<tr>
<th>-2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th></th>
<th>-2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

-8 -7 -6 -5 -4 -3 -2 -1
Converting Binary (2’s C) to Decimal

1. If MS bit is one (i.e. number is negative), take two’s complement to get a positive number.

2. Get the decimal as if the number is unsigned (using power of 2s).

3. If original number was negative, add a minus sign.

<table>
<thead>
<tr>
<th>n</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
</tr>
</tbody>
</table>
Examples

$X = 00100111_{\text{two}}$

$= 2^5+2^2+2^1+2^0 = 32+4+2+1$

$= 39_{\text{ten}}$

<table>
<thead>
<tr>
<th>n</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
</tr>
</tbody>
</table>

$X = 11100110_{\text{two}}$

$-X = 00011010$

$= 2^4+2^3+2^1 = 16+8+2$

$= 26_{\text{ten}}$

$X = -26_{\text{ten}}$
Numeric Ranges

Example: Assume 16-bit numbers

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned Max</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>Signed Max</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Signed Min</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Sizes

<table>
<thead>
<tr>
<th></th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Unsig. Max</td>
<td>255</td>
</tr>
<tr>
<td>Signed Max</td>
<td>127</td>
</tr>
<tr>
<td>Signed Min</td>
<td>-128</td>
</tr>
</tbody>
</table>

C Programming

- `#include <limits.h>`
- Declares constants, e.g.,
 - `INT_MAX`
 - `LONG_MAX`
 - `INT_MIN`
 - `UINT_MIN`
 - ...
What happens if you change the type of a variable (aka type casting)?
Signed vs. Unsigned in C

- **Constants**
 - By default, signed integers
 - Unsigned with “U” as suffix

 \[0u, 4294967259u\]

- **Casting**
 - **Explicit casting** between signed & unsigned

    ```c
    int tx, ty;
    unsigned ux, uy;
    tx = (int) ux;
    uy = (unsigned) ty;
    ```

 - **Implicit casting** also occurs via assignments and procedure calls

    ```c
    tx = ux;
    uy = ty;
    ```
General Rule for Casting: signed <-> unsigned

Follow these two steps:
1. Keep the bit presentation
2. Re-interpret

Effect:
• Numerical value may change.
• Bit pattern stays the same.
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Casting Surprises

• Expression Evaluation
 – If there is a mix of unsigned and signed in single expression,
 \textit{signed values implicitly cast to unsigned}
 – Including comparison operations $<$, $>$, $==$, $<=$,

If there is an expression that has many types, the compiler follows these rules.
Example

#include <stdio.h>

main() {
 int i = -7;
 unsigned j = 5;
 if (i > j)
 printf("Surprise!\n");
}

Condition is TRUE!
Expanding & Truncating a variable
Expanding

• Convert \(w \)-bit signed integer to \(w+k \)-bit with same value
• Convert unsigned: pad \(k \) 0 bits in front
• Convert signed: make \(k \) copies of sign bit
Sign Extension Example

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00 3B 6D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension
Truncating

- Example: from int to short (i.e. from 32-bit to 16-bit)
- High-order bits are truncated
- Value is altered → must reinterpret
- This non-intuitive behavior can lead to buggy code! → So don’t do it!
Addition, negation, multiplication, and shifting
Negation: Complement & Increment

• The complement of x satisfies
 \[
 \text{Two'sComp}(x) + x = 0
 \]
 \[
 \text{Two'sComp}(x) = \sim x + 1
 \]

• Proof sketch
 – Observation: \[
 \sim x + x = 1111\ldots111 = -1
 \]
 \[
 \Rightarrow \sim x + x + 1 = 0
 \]
 \[
 \Rightarrow (\sim x + 1) + x = 0
 \]
 \[
 \Rightarrow \text{Two'sComp}(x) + x = 0
 \]

\[
\begin{array}{cccccccc}
 x & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
 \sim x & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
 \hline
 \sim x + x + 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
 \hline
 -1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]
Unsigned Addition

Operands: \(w \) bits

True Sum: \(w+1 \) bits

Discard Carry: \(w \) bits

\[
\begin{array}{c}
\text{Operands: } w \text{ bits} \\
\text{True Sum: } w+1 \text{ bits} \\
\text{Discard Carry: } w \text{ bits}
\end{array}
\]
Two's Complement Addition

<table>
<thead>
<tr>
<th>Operands: w bits</th>
<th>u</th>
<th>(\cdots)</th>
<th>(\cdots)</th>
<th>(\cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>(v)</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>True Sum: $w+1$ bits</td>
<td>$u + v$</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>Discard Carry: w bits</td>
<td>TAdd(_w(u, v))</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
</tr>
</tbody>
</table>

- If $\text{sum} \geq 2^{w-1}$, becomes negative (positive overflow)
- If $\text{sum} < -2^{w-1}$, becomes positive (negative overflow)
Multiplication

• Exact Product of w-bit numbers x, y
 – Either signed or unsigned

• Ranges
 – Unsigned: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 – Two’s complement min: $x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}$
 – Two’s complement max: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$
Power-of-2 Multiply with Shift

• **Operation**

 – \(u << k \) gives \(u * 2^k \)

 – Both signed and unsigned

• **Examples**

 – \(u << 3 \) == \(u * 8 \)

 – \((u << 5) - (u << 3)\) == \(u * 24 \)

 – Most machines shift and add faster than multiply

 • Compiler generates this code automatically
Compiled Multiplication Code

C Function

```c
int mul12(int x)
{
    return x*12;
}
```

Compiled Arithmetic Operations

```c
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

```
t = x+x*2
return t << 2;
```

- **C compiler automatically generates shift/add code when multiplying by constant**
Unsigned Power-of-2
Divide with Shift

- Quotient of Unsigned by Power of 2
 \[u \gg k \text{ gives } \lfloor u / 2^k \rfloor \]

Examples:

<table>
<thead>
<tr>
<th></th>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(x \gg 1)</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>(x \gg 4)</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>(x \gg 8)</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Compiled Unsigned Division Code

C Function

```c
unsigned udiv8(unsigned x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>
Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - \(x \gg k \) gives \(\lfloor x / 2^k \rfloor \)
 - Uses arithmetic shift

Examples

<table>
<thead>
<tr>
<th></th>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y \gg 1)</td>
<td>-7606.5</td>
<td>-7607</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>(y \gg 4)</td>
<td>-950.8125</td>
<td>-951</td>
<td>FC 49</td>
<td>111111100 01001001</td>
</tr>
<tr>
<td>(y \gg 8)</td>
<td>-59.4257813</td>
<td>-60</td>
<td>FF C4</td>
<td>111111111 11000100</td>
</tr>
</tbody>
</table>
Floating Points

Some slides and information about FP are adopted from Prof. Michael Overton book:

Numerical Computing with IEEE Floating Point Arithmetic
Turing Award 1989 to William Kahan for design of the IEEE Floating Point Standards 754 (binary) and 854 (decimal)
Background: Fractional binary numbers

• What is 1011.101_2?
Background: Fractional Binary Numbers

- **Value:**

\[
\sum_{k=-j}^{i} b_k \times 2^k
\]
Fractional Binary Numbers: Examples

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 3/4</td>
<td>101.11₂</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.111₂</td>
</tr>
</tbody>
</table>
Why not fractional binary numbers?

• Not efficient
 - $3 \times 2^{100} \rightarrow 10100000000 \ldots \ldots 0$

- Given a finite length (e.g. 32-bits), cannot represent very large nor very small numbers ($\epsilon \rightarrow 0$)
IEEE Floating Point

• **IEEE Standard 754**
 – Supported by all major CPUs
 – The IEEE standards committee consisted mostly of hardware people, plus a few academics led by W. Kahan at Berkeley.

• **Main goals:**
 – Consistent representation of floating point numbers by all machines.
 – Correctly rounded floating point operations.
 – Consistent treatment of exceptional situations such as division by zero.
Floating Point Representation

• Numerical Form:
 \[(-1)^s \cdot M \cdot 2^E \]
 - Sign bit \(s \) determines whether number is negative or positive
 - Significand \(M \) a fractional value
 - Exponent \(E \) weights value by power of two

• Encoding
 - MSB \(s \) is sign bit \(s \)
 - \(\text{exp} \) field encodes \(E \)
 - \(\text{frac} \) field encodes \(M \)
Precisions

- **Single precision: 32 bits**

 \[
 s \quad \text{exp}\quad \frac{1}{8} \quad \text{bits}
 \]
 \[
 1 \quad 8\text{-bits} \quad 23\text{-bits}
 \]

- **Double precision: 64 bits**

 \[
 s \quad \text{exp}\quad \frac{1}{11} \quad \text{bits}
 \]
 \[
 1 \quad 11\text{-bits} \quad 52\text{-bits}
 \]

- **Extended precision: 80 bits (Intel only)**

 \[
 s \quad \text{exp}\quad \frac{1}{15} \quad \text{bits}
 \]
 \[
 1 \quad 15\text{-bits} \quad 63 \text{ or } 64\text{-bits}
 \]
Based on \exp
we have 3 encoding schemes

- $\exp \neq 0..0$ or $11...1$ \rightarrow normalized encoding
- $\exp = 0...000$ \rightarrow denormalized encoding
- $\exp = 1111...1$ \rightarrow special value encoding
 - $\text{frac} = 000...0$
 - $\text{frac} = \text{something else}$
1. Normalized Encoding

- **Condition:** \(\text{exp} \neq 000\ldots0 \) and \(\text{exp} \neq 111\ldots1 \) referred to as Bias

- **Exponent is:** \(E = \text{Exp} - (2^{k-1} - 1), \) \(k \) is the \# of exponent bits
 - Single precision: \(E = \text{exp} - 127 \)
 - Double precision: \(E = \text{exp} - 1023 \)

- **Significand is:** \(M = 1. \ldots \times x \)
 - Range(\(M \)) = \([1.0, 2.0-\varepsilon]\)
 - Get extra leading bit for free

\[
\text{Range}(E) = [-126, 127] \\
\text{Range}(E) = [-1022, 1023]
\]
Normalized Encoding Example

• Value: \(\text{Float } F = 15213.0; \)
 \[
 15213_{10} = 11101101101101_2 \\
 = 1.1101101101101_2 \times 2^{13}

 \]

• Significand
 \[
 M = 1.1101101101101_2 \\
 \text{frac} = 1101101101101000000000000_2

 \]

• Exponent
 \[
 E = \exp - \text{Bias} = \exp - 127 = 13 \\
 \Rightarrow \exp = 140 = 10001100_2

 \]

• Result:
 \[
 0 \ 10001100 \ 11011011011010000000000000 \\
 \text{s} \ \text{exp} \ \text{frac}

 \]
2. Denormalized Encoding
(called subnormal in revised standard 854)

• **Condition:** \(\text{exp} = 000\ldots0 \)

• **Exponent value:** \(E = 1 - \text{Bias} \) (instead of \(E = 0 - \text{Bias} \))
• **Significand is:** \(M = 0.xxx\ldots x_2 \) (instead of \(M=1.xxx_2 \))

• **Cases**
 - \(\text{exp} = 000\ldots0, \text{frac} = 000\ldots0 \)
 • Represents zero
 • Note distinct values: +0 and -0
 - \(\text{exp} = 000\ldots0, \text{frac} \neq 000\ldots0 \)
 • Numbers very close to 0.0
3. Special Values Encoding

- **Condition**: \(\text{exp} = \,111\ldots1 \)

- **Case**: \(\text{exp} = \,111\ldots1, \frac{\text{frac}}{\text{000\ldots0}} \)
 - Represents value \(\infty \) (infinity)
 - Operation that overflows
 - E.g., \(1.0/0.0 = -1.0/-0.0 = +\infty, \, 1.0/-0.0 = -\infty \)

- **Case**: \(\text{exp} = \,111\ldots1, \frac{\text{frac}}{\neq \,000\ldots0} \)
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., \(\sqrt{-1}, \infty - \infty, \infty \times 0 \)
Visualization: Floating Point Encodings

- ∞
- ∞
- Normalized
- Denorm
- +Denorm
- +Normalized
- 0
- 0
- NaN
- NaN
Floating Point in C

- **C**:
 - `float` single precision
 - `double` double precision

- **Conversions/Casting**:
 - Casting between `int`, `float`, and `double` changes bit representation, examples:
 - `double/float → int`
 - Truncates fractional part
 - Not defined when out of range or NaN
 - `int → double`
 - Exact conversion
Conclusions

• Everything is stored in memory as 1s and 0s
• The binary presentation by itself does not carry a meaning, it depends on the interpretation.
• IEEE Floating Point has clear mathematical properties
 – Represents numbers as: \((-1)^s \times M \times 2^E\)