Welcome to
CSCI-UA 101
Schedule

- Introductions
- Syllabus
- Expectations
- Let’s get this started
- hw assignment
Hi, I’m Brett.

• Adjunct Professor, Courant Institute of Mathematical Sciences
Introductions

• Preferred name

• Programming experience - languages, etc

• Programming interests? What do you want to learn this semester?

• CS major or minor
A bit about me

- Adjunct Professor, Courant Institute of Mathematical Sciences
- Undergraduate degree in Information Systems, Master’s at NYU’s Interactive Telecommunications Program (https://tisch.nyu.edu/itp)
- Senior Developer of Interactive Exhibits, American Museum of Natural History
Syllabus

• Let’s check out the website!

http://cs.nyu.edu/courses/fall17/CSCI-UA.0101-008/
Expectations of you

• Come to class!
 • (I know it’s super early)
 • The class will get harder. Especially the second half, and everything builds on previous topics
 • You can ask questions, get help, the book will make more sense
 • Come to office hours or see the tutors if things aren’t making sense. Don’t fall behind - it’ll be hard to catch up

• Read the Book! The students who do well in the class stay on top of the reading

• Participate!
 • It’ll be more fun, promise
 • You’ll stay awake
 • It might help your grade...
Expectations of me

• Come to class!
 • (prepared)

• Write clear homework assignments

• Give prompt feedback

• Be responsive to emails, etc

• Hold office hours
Let’s get started
This class is about programming
• Learning to program is learning to tell a computer what to do
So what is a computer?

- Electronic device to store and process data
- Hardware
 - Central Processing Unit (CPU)
 - Memory
 - Storage devices
 - Input/output devices
 - comm devices
- Software
CPU

- Computer’s brain
- 2 parts:
 - Control unit
 - Arithmetic/logic unit
- Made of transistors
Storing data

- 1’s and 0’s
- bits
- byte = 8 bits
Counting in Binary and Decimal

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>0.5</td>
<td>7</td>
</tr>
<tr>
<td>0.25</td>
<td>8</td>
</tr>
<tr>
<td>0.125</td>
<td>9</td>
</tr>
<tr>
<td>0.0625</td>
<td>10</td>
</tr>
<tr>
<td>0.03125</td>
<td>11</td>
</tr>
<tr>
<td>0.015625</td>
<td>12</td>
</tr>
<tr>
<td>0.0078125</td>
<td>13</td>
</tr>
<tr>
<td>0.00390625</td>
<td>14</td>
</tr>
<tr>
<td>0.001953125</td>
<td>15</td>
</tr>
<tr>
<td>0.0009765625</td>
<td>16</td>
</tr>
</tbody>
</table>

Note: You don’t need to memorize converting to binary! That’s the computer’s job.
Memory

- Computer’s work area
- every byte in memory has a unique address
- RAM = random-access memory
- important when writing programs!
Machine code

- Instructions in binary
- like this: 1101101010011010
Assembly Language

add 2, 3, result

Start:
sei ;pretty standard 6502 type init here
cld
lda #%00010000 ;init PPU control register 1
sta PPU_CTRL_REG1
ldx #$ff ;reset stack pointer
txs
VBlank1: lda PPU_STATUS ;wait two frames
 bpl VBlank1
VBlank2: lda PPU_STATUS
 bpl VBlank2
High-level language

- Platform-independent
- English-like, easier to learn and use
- You write source code, translated using an interpreter or compiler
Java

- Designed in 1991 for embedded systems, called oak
- Renamed Java in 95, redesigned for web apps
- Super popular
 (http://www.tiobe.com/tiobe-index/)
Wait, Java?

• Why Java? It’s not the new hotness in terms of languages, but it is a great language to learn coding principles

• If you know Java, jumping to C# or C++ or another language is a lot easier than from some other scripting or interpreted languages.

• Plus...
Java powers all this:

- Server technology
- websites
- desktop apps
- mobile apps (Android)
- Interactive installations and data visualizations (Processing)
- Controls MARS ROVERS
- etc…
Some definitions

• **Java language specification** - syntax and semantics
 https://docs.oracle.com/javase/specs/jls/se8/html/index.html

• **Application program interface (API) (JavaDoc!)** - library. predefined classes and interfaces.
 https://docs.oracle.com/javase/8/docs/api/index.html

• **Java Standard Edition (Java SE)** - We’ll use this one. For client-side applications

• **Java Enterprise Edition (Java EE)** - server-side apps (servlets), etc

• **Java Micro Edition (Java ME)** - mobile devices like old cellphones
How to program in java

• Make sure the JDK is installed!

• Use a text editor to write java program, then compile, then run.

• OR use an IDE (Integrated development environment)
public class HelloWorld {
 public static void main(String[] args) {
 // Displays message to console
 System.out.println("Hello World!");
 }
}

Homework

• Read chapters 1&2
• Install JDK and Eclipse
• Assignment #00