Introduction to:
Computers & Programming: Administrative Matters

Adam Meyers
New York University
Outline

• What to Expect from a Intro to CS Class
• Basic Info:
 – Class Schedule, Room Number, Office Hours, Contact Info, Course Webpage
• Policies:
 – Homework, Exams, Grading, Cheating
• What is covered in the Class
 – Materials, Syllabus, Structure of classes
• Installing Python
What to Expect from Intro to CS

• You will learn how to write computer programs:
 – Sets of instructions computers follow to solve problems, display images, etc.
 – The end result of creative problem solving

• Skills that are helpful:
 – Ability to follow instructions loosely
 – Experimentation and game play when solving problems
 – Combination of mathematics (especially logic) and creativity
 – Asking questions without fear
 – Willingness to fix things when they don't work (and not being afraid of breaking something).

• My best students varied a lot in their specialties: mathematicians, artists, filmmakers, philosophers, musicians, etc. …
What to Watch Out For

- Computer Science is a type of Math: info is sequential
- Key concepts can hold you back if you don't understand
 - Similar to disciplines including: art, music, math, …
- May be more difficult than a typical “Intro to” Elective
- Do not start this class late in the term
- Do not hesitate to ask questions in class
- Do not do homework late or miss classes (lectures or labs)
 - This can have a substantial effect on test grades
 - There is no (official) penalty for missed classes or late HW (until end of the term), but doing so impedes understanding
- If you don't understand, seek help immediately so you don't fall behind
 - Ask tutors (lab classes, computer labs, etutors)
 - Ask me (office hours, appointment, email)
- If you have trouble & are grade conscious, consider taking class Pass/Fail
Basic Info: CSCI-UA.0002 Spring 2017

- **Websites**
 - Section 007: http://cs.nyu.edu/courses/fall17/CSCI-UA.0002-007/
 - Section 009: http://cs.nyu.edu/courses/fall17/CSCI-UA.0002-009/
 - CSCI-UA.0002 Website: http://cs.nyu.edu/courses/fall17/CSCI-UA.0002-002/common_syllabus/
 - Professor's Website: https://nlp.cs.nyu.edu/people/meyers.html

- **Schedule**:

<table>
<thead>
<tr>
<th>Section</th>
<th>Days</th>
<th>Time</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>007</td>
<td>M & W</td>
<td>8:00-9:15AM</td>
<td>60FA 150</td>
</tr>
<tr>
<td>011</td>
<td>M & W</td>
<td>11:00-12:15AM</td>
<td>60FA 110</td>
</tr>
</tbody>
</table>

- **No Classes**: Mon October 9 and Wed November 22
- **“Extra” Class**: Tuesday December 12 (Administrative Day: Monday schedule on a Tuesday)
- **Midterms 1 and 2**: Wednesday October 11 and Wednesday November 15
- **Final**: Same Classroom, Different Timing
 - Section 007: December 20: **8:00AM—9:50**
 - Section 011: December 18: **10:00AM-11:50AM** *(please don't come 1 hour late)*

- **Please plan your plane tickets accordingly**
- **Permission to take the test for the other section depend on availability (and legal room capacity)**

- My office: 60 Fifth Avenue, Rm 301
- Office Hours: Monday: 1:30-3PM or Thursday: 10:30-12PM or by appointment
- Email and Phone: *meyers@cs.nyu.edu* and 212-998-3482
Website and NYUClasses

• NYUClasses
 – Submitting Homework
 • Usually python code or text
 • Other HomeWork Should be in pdf form (e.g., scan of drawn flowchart)
 – Getting Grades
 – Course Documents with Licensing Restrictions

• Website – All Other Course Information
 – Schedule, class lectures, sample test questions, python information, etc.
 – Quizzes and supplemental videos
 – Updated throughout the semester (errors fixed, new stuff added)
Grades

- Online Quizzes 5%
- Homework (programming assignments): 20%
- Midterm 1 20%
- Midterm 2 20%
- Final 35%
- All grades are converted to letter grades before averaging (A = 4, A- = 3.7, B+ 3.3, ..., D = 1, F = 0)
Your Grade in Python

- def calc_grade1(Quiz, HW, Mid1, Mid2, Final):
 # Quiz is the average grade for quizzes
 # HW is the average grade for programming assignments
 # Mid1 is your Midterm 1 grade
 # Mid2 is your Midterm 2 grade
 # Final is your grade on the Final Exam
 Grade = (Quiz * .05) + (HW * .2) + (Midterm1 * .20) + (Midterm2 * .20) + (Final * .35)
 return(Grade)

- def calc_grade2(Quiz, HW, Mid1, Mid2, Final):
 Grade = (Quiz * .05) + (HW *.2) + (max(Midterm1,Midterm2) * .30) + (Final * .45)
 return(Grade)

- def final_grade(Quiz, HW, Mid1, Mid2, Final):
 Grade = max(calc_grade1(Quiz,HW,Mid1,Mid2,Final),calc_grade2(Quiz,HW,Mid1,MId2,Final))
 return(Grade)

- Bonus for A Grade on 2 Midterms: One A counts as an A+ for purpose of calculating average
Cheating

• Tests, homework and grades are:
 – Tools for assessment of what you did and did not learn
• Cheating is when you copy someone else's work without giving them credit.
• Discussing homework with classmates is not cheating if:
 – Each student produces a different solution and/or
 – Afterwards, each student could solve similar problems on their own
 – For large collaborations, students should cite each other's name on the HW
• Consulting other students on tests is definitely cheating.
• The only reason to cheat is:
 – You think obtaining high grades is more important than learning
 • And you don't think you will be caught
• I have no respect for cheaters:
 – They will fail the class and be reported to the administration
Late Homework, Missing Classes and Grades

- It is Easier to Learn the Material in Class (including labs)
 - Reading online lecture notes is not the same as attending
 - I sometimes present material differently from the modules and from the book
 - For example, I place greater emphasis on writing code using functions
 - This can make relying on online materials more difficult
- Multiple-choice quizzes – no credit if late (but they are not worth very much anyway)
- Programming Assignments: Lateness → **Natural Consequences, Fairness and Guilt**
 - **Natural Consequences**
 - Easier to prepare for tests if you have graded homework on the material on the test
 - Doing homework on time makes it easier to keep up because CS is sequential
 - **Fairness**: The graders mark on-time homework first and then late homeworks
 - **Guilt**:
 - Graders have lives too – it is an imposition on them when you do late HW
 - They are paid by the hour – if they run out of time, they may not have time to grade your late homework, e.g., they have to pass their classes too
 - Extremely Late HW may never be graded if the grader simply does not have time
 - No Points Taken Off for late programming assignment unless it is the End of the Term and Grader simply does not have time
 - I think these consequences are severe enough without me taking additional points off, which I think would compound the problem
If You Miss a Class, Please keep Up With the Material

• Check the website
• Pay me an office visit
• Consult with a classmate (get their contact info)
• Plan ahead so you can go to the corresponding class in another section (ask me first, please.)
Homework

- Chapters in the Gaddis Book (and some other reading)
- Online modules
- Online multiple choice quizzes after each module (5%)
- Programming Assignments (20%)
 - Each program is judged as follows:
 - Does it solve the problem posed by the assignment
 - Is it clear?
 - Does it work?
 - Do you go beyond the assignment and show that you really know what you are doing? Do you add “bells and whistles”?
Why Does it Matter That I am Teaching 2 Sections

• It is possible to makeup missed classes and exams
 – It is OK to switch classes occasionally, to make up a test or a missed class, etc. as an exception to the rule
 • provided that you let me know (by email) and one class does not become overcrowded and disfunctional.
 – Overcrowding is illegal due to the fire code
 – In terms of make-up classes, the alignment may be imperfect, e.g., if one class ends up going more quickly than the other for any reason (e.g., fire drills, bad weather, etc.)
• Shared office hours (with a 3rd class on another topic as well).
Syllabus

• Introduction to Programming Languages
• Python Basics
• Working with variables and operators
• Control Structures
• Repetition Structures
• Working with Text
• Functions and Modules
• Lists and Dictionaries
• File Input and Output
• Other topics, as time permits
Structure of Classes

- **Types of Classes**
 - 40%: lecture class, sometimes with in-class program
 - 33%: lab-style class.
 - May include material I did not have time for during previous lecture
 - Everyone will do their “homework” in class with the support of T.A.s and myself
 - Finish Homework at Home and send in (approximately 1 assignment per week)
 - 27% Reviews and Tests
 - There are 3 tests and 3 pre-test reviews and 2 post-test reviews out of 29 sessions

- **Laptop Recommended, but if you do not have a laptop**
 - We will partner you with someone who does and you will both include each other's names on your homework so the grader knows who you partnered with.
 - You will be able to get copies of your work by email and submit it later.

- **10 Modules (Online materials) and Associated Quizzes:**
 - Modules: Include short videos and testing of code in workspaces
 - Multiple choice quizzes with strict deadlines, worth a small part of the final grade.
Materials

- **Starting with Python (3rd or 4th Edition)** by Tony Gaddis
 - Cover most (not all) material in book, as per HW assignments
 - Rate of reading: 1 chapter every 2 or 3 classes
 - Instructions for adapting the 2nd Edition for use with this class

- **Modules: Self-Study Materials on NYU Website**
 - Links on Class Website
 - Matching Quizzes in NYUClasses

- **Slides and Notes from Lectures**: most material available online, but copyrighted material in NYUClasses (just 1 set of slides)

- **Python Documentation** (reference): https://docs.python.org/3/

- **Additional material**: How computers work, algorithms, properties of other programming languages, etc.
Install Python ASAP

• Go to www.python.org
• Click on the Download tab
• Download Latest Version of Python 3 (NOT Python 2)
 – Probably Version 3.6
 • Compatibility issues may be solved by installing slightly earlier version (3.5)
 – For Windows, MAC or Linux
 • * Python 3 for tablets, cell phones exists, but not supported by NYU staff
 • Python 3 for Chromebooks is possible, but difficult

• Install Python
 – If there are installation problems, do not be silent
 – For additional Instructions go to this site and click on “View Instructions”
 • http://cs.nyu.edu/courses/fall17/CSCI-UA.0002-002/common_syllabus/#software
 – If you have a laptop, take your laptop to the lab tutors
 • Computer Lab at Kimmel Hall
 • Schedule will be posted at common curriculum website (may start 2nd Week of Classes):
 • http://cs.nyu.edu/courses/fall17/CSCI-UA.0002-002/common_syllabus/#tutoring