CSCGA.3033004

Graphics Processing Units (GPUS):
Architecture and Programming

Lecture 2:Hardware Perspective of GPUs

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com

Hi st ory of GPI
How did they evolve?

Why Looking at GPU History?

A Looking at how things evolved can
highlight future directions.

A Some of the current architecture
decli s1 ons wonot ma k e
historical perspective.

A Little Bit of Vocabulary

A Rendering: the process of generating an
Image from a model

A Vertex : the corner of a polygon (usually
that polygon is a triangle)

A Pixel: smallest addressable screen
element

From Numbers to Screen

A.ME052 -8, 7640952 -A. 218137,
JOTZZ40 9.08a5502 -a.218132,
HEAT1E A 3A0596 @ 2TE132,
2020 -3, ed4004 22181322,
14406 B.324436 -8.218132,
ASTET BERIT™M 2 -BL2181322,
LSRN0 8793529 -a.2181.382,
802184 @.272@22 —b.218122,
0.5333:035 B.929310 -8.218132,
0442562 0095525 -0 2161 3%,
B.22174 1.08139 —B.210132,
010652 —a.1a122,

“H.z21794 1.8815% -d.Z216132,
-0 44E5R3 8085585 -0 218132,
—H..38CZ03 9.923815 -a.218132,

-_—————=

Before GPUs

A Vertices to pixels:
I Transformations done on CPU
iCompute each pixel oby
slow!

Example: 1 million triangles * 100 pixels
per triangle * 10 lights * 4 cycles per
light computation = 4 billion cycles

Early GPUSs;
Early 80s to Late 90s

CPU

FixedFunction Pipeline

GPU

Early GPUSs;
Early 80s to Late 90s

Host CPU

FixedFunction Pipeline

GPU

Receives graphics command:
and data from CPU

Early GPUSs;
Early 80s to Late 90s

CPU

FixedFunction Pipeline

GPU

MReceives triangle data

KConverts them into a form that
hardware understands

AStore the prepared data in vertex cache

N
—>

Early GPUSs;
Early 80s to Late 90s

CPU
FixedFunction Pipeline

GPU

Avertex shading transform and lighting
~ Mssignspe@S NI SE I f dzS

Early GPUSs;
Early 80s to Late 90s

CPU
FixedFunction Pipeline

GPU

Creates edge equations to interpolate
colors across pixels touched by the trianc

Early GPUSs;
Early 80s to Late 90s

CPU

R
- =

FixedFunction Pipeline

Metermines which pixel
falls into which triangle

A-or each pixel, interpolate
per-pixel values from vertices

¢

i

Early GPUSs;
Early 80s to Late 90s

CPU
FixedFunction Pipeline

GPU

Determines the final color
of each pixel

Early GPUSs;

Early 80s to Late 90s

CPU

FixedFunction Pipeline

[Hostinterface | aPU

Theraster operation
performs color raster operations

that blend the color of overlapping
objects for transparency and
antialiasing
) oo H HE
oo H HE
G HEN BN
dOEEEE » B |
o o IEIIAE « HE « BN
o JUDLEIEE M0
«ODODCIOD. B &
TDDCHEE B | W
, sieioo[o 0 | | NN |
" e oo s AN HEEN N
eccccoccen HE HE

Triangle geometry Aliase

bt

el | IR T |
: HENEEEEEEEN
o
173
¢ IIEEEEEEEEE

(=%

>

Early GPUSs;

Early 80s to Late 90s

— FixedFunction Pipeline
-

| Host interface | GPU
=>. Theframe buffer interface

manages memory reads/writes.

Next Steps

A In 2001

I NVIDIA exposed the application developer to
the Instruction set of VS/T&L stage

A Later:

I General programmability extended to to shader
stage A trend toward unifying the functionality
of the different stages as seen by the
application programmer.

I In graphics pipelines, certain stages do a great
deal of floating -points arithmetic on a
completely independent data.

A Data independence is exploited A key assumption in
GPUs

3D application
or game

3D API
Commands

Y

3D API: CPU

OpenGL or
Direct3D

CPU - GPU boundary
GPU
command and Assembled GPU
data stream polygons, Pix‘.el .
\ 4 Vertex index lines, and location PC;XTI
stream ; stream updates
GPU Primitive el Rasterization and Raster

front > o . > . — | Framebuffer
end assembly interpolation operations

F 3 A
Pretransformed

Vertices Rasterized

pretransformed
fragments

Transformed
fragments

Transformed
vertices

Programmable
—> vertex —
processor

Programmable
fragment —
processor

A\

Fragment = a technical term usually meaning a single pixel

In 2006

ANVIDIA GeForce 8800 mapped
separate graphics stage to a unified
array of processors

I For vertex shading, geometry processing,
and pixel processing

I Allows dynamic partition

Regularity + Massive Parallelism

) u.‘-,!

S e
o A KT

¢)

. Host
! ! *

} } ! } } }
S| [EN (SN [(SN S][]

[sell [se[] [seil Jf(sell]
IO (O[] | (OO IO ||| (O
L IC RO C Tl 0 DT 0 T IC INC 10 Tl 0 JRT 0 Tl 10 IR0 I Tl 10 T[]
L IC INCIC T I JRC L TNl IC NG 10l 0 JRC 0 Tl 10 IR L Tl IC N [

[sell

Exploring the use of GPUs to solve compute intensive problems

The birth of GPGPU but there are many constraints
GPUs and associated APIs were designed to process graphics da

Previous GPGPU Constraints

A Dealing with graphics API

per thread

I Working with the corner cases of Input Registes
the graphics API —
A Addressing modes
I Limited texture size/dimension g : T:pRg
A Shader capabilities
i Limited outputs LGS

A Instruction sets -

I Lack of Integer & bit ops
A Communication limited
A No user-defined data types

The Birth of GPU Computing

A Step 1 : Designing high-efficiency floating -point and
Integer processors.

A Step 2 : Exploiting data parallelism by having large
number of processors

A Step 3 : Shader processors fully programmable with
large instruction cache, instruction memory, and
Instruction control logic.

A Step 4 : Reducing the cost of hardware by having
multiple shader processors to share their cache and
control logic.

A Step 5 : Adding memory load/store instructions with
random byte addressing capability

A Step 6 : Developing CUDA C/C++ compiler, libraries,
and runtime software models.

A Quick Glimpse on:
Flynn Classification

A A taxonomy of computer architecture
A Proposed by Micheal Flynn in 1966
A It is based two things:

I Instructions

| Data
Single instruction _I\/Iultlple_
instruction
Single data SISD MISD
Multiple data SIMD MIMD

S15D

Instruction Pool

Data Pool

MISD

PU|-

PU = Processing Unit

Instruction Pool |

Data Pool
I

SIMD Instruction Pool
PU|—
E > PU -
3
(=] PU|+
+|PU|«
MIMD Instruction Pool
—|pPu|{ =|PU|
2|—[pul |pul-
3
a|—[pul+ L|pul-
—|pu| [Pyl

S15D

Instruction Pool

Data Pool

MISD

Instruction Pool

PUl— —|PU|-

Data Pool
I

SIMD Instruction Pool
* PU -~
é > PU -
3
= PU|+
Which one .[pul-
IS closest to
GPU?
MIMD Instruction Pool

—|pPu|{ =|PU|

—|PU|— L|PU|-

Data Pool

—[pUl |PU|

—|pul! L+|pul+-

Problem With GPUs: Power

Total System Power Consumption

Watts (Lower is Better)

B Unigine Heaven B Furmark Load B Desktop Idle

Mvidia GTX S80 4GE

Sapphire R9 285 Vapor-X 2GB

Mvidia GTX 770 2GB

Mvicia GTX 780 Ti 3GB

Mvidia GTX 780 3GEB

AMD RS 290 4GB (Uber Mode)

AMD RS 250X 4GB (Uber Mode)

Gigabyte GTX 980 G1 Gaming 4GB

Gigabyte GTX 780 Ti GHz Edition 3GB

77
(]
64
10
274
331
33
358
B2
59
351
378
a4
93
93
=g
028
33
82
1 7 T - T ' T T T | i T : | . T T I
0 50 100 150 200 250 300 350 400 450 500

Source http://www.eteknix.com/gigabytegl-gaminggeforcegtx-980-4gb-graphicscard-review/17/

Problems Faced by GPUs

A Need enough parallelism
A Under - utilization
A Bandwidth to CPU

Still a way to go

Let 0s Take A CI
The Hardware

Simplified View

PCl Express

CPU GPU

| CPU memory l ‘ GPU memory I

{ 2dzNDODSY G¢KS /!51 |1 FyRoz221¢§ 0 bAOK2f I

A Cl oser L oo

CPU

PCl Express

“North bridge” i

Memory controller
Memory controller

¥

GPU memory
CPU memary

{ 2dzNDODSY G¢KS /!51 |1 FyRoz221¢§ 0 bAOK2f I

How about multi -CPU?
Also: memory controller in CPU

CPU CPU
memory memory
- TS . 4.-* \IL
i Rz
CPU B J CPU
s T2
~/ ~N/

PCl Express !

/O Hub < :> GPU

{ 2dzNDODSY G¢KS /!51 |1 FyRoz221¢§ 0 bAOK2f I

/O Hub Iinside the CPU

GPU GPU
memaory memory

{ 2dzNDODSY G¢KS /!51 |1 FyRoz221¢§ 0 bAOK2f I

North Bridge}—— System DRAM

PCl-Express

GDDR GDDR
GDDR GDDR
GDDR GDDR
GDDR GDDR

Graphics
Card

GDDR
GDDR
GDDR
GDDR

North Bridgel—— System DRAM

PCIl-Express
Memory Processor
Heatsink Processor
s Fan

Motherbocard
\ s Connection

source: http://static.ddmcdn.com/gif/graphiesard-5.jpg

The Interconnection:
CPUGPU and GPUGPU

PCle Crossfire

About Connections

SLI NVLINK

A
A
A

PCle

Peripheral Component Interconnect
Developed by Intel
PCI Express architecture is a high performance,

O interconnect for peripherals.

A A serial point-to-point interconnect between two

devices

A Data sent in packets
A Each lane enables 250 MBytes /s bandwidth per

direction.

A Synchronous
A No shared bus but a shared switch

PCle

PCI-51G Developers Conference Copyright & 2007, PCI-513, All Rights Ressrved
Link Width x1 X2 x4 X8 x12 x16 X32
Aggregate 0.5 1 2 4 6 8 16 Speed for
BW
(GBytes/s) v30

Speed of PCle

Version Speed (x1)

1.0 2.5 GT/s 250 MB/s

2.0 5GT/s 500MB/s

3.0 8GT/s 984.6 MB/s

4.0 16 GT/s 1969 MB/s
5.0(expected in2019) 32 or 25GTs 3938 or 307 MB/s

POe SWITCH

PO CONNECTION

HIGH BANDWIDTH MEDIUM HIGH BANDWIDTH HIGH BANDWIDTH
Y
GRAPYECS MEMOR BANDWIDTH LARGE GRAMMICS MEMORY GRAPHICS MEMORY BANDWIDTH LARGE

SYSTEM MEMORY SYSTEM MEMORY

MEDIUM

3x1 PCle Slots

1 x16PCle Slots

AA8-MA
1 R

2 PCISlots

Source: National Instruments

1x16PCle Slots

Source: National Instruments

SLI

A Scalable Link Interface
A Developed by NVIDIA

A Enables inter -GPU communication of up to
1GB/s

A Consumesno bandwidth over the PCle bus.
A 2,3, or 4 graphics cards

Crossfire

A From AMD
A Very similar technology as SLI

Source: http://www.pcworld.com/article/2023630/hovo-trick-out-your-gamingpc-with-multiple-graphicscards.html

