CSCI-GA.3033-004

Graphics Processing Units (GPUs): Architecture and Programming

CUDA

Advanced Techniques 2

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com
Alignment
Memory Alignment

- Memory access on the GPU works much better if the data items are aligned as we saw before.
- Hence, allocating 2D (or 3D) arrays so that every row starts at a 64- (or 128-) byte boundary address will improve performance.
- Difficult to do for a programmer!
2D Arrays

- CUDA offers special versions of:
 - Memory allocation of 2D arrays so that every row is padded (if necessary). The function determines the best pitch and returns it to the program. The function name is `cudaMallocPitch()`
 - Memory copy operations that take into account the pitch that was chosen by the memory allocation operation. The function name is `cudaMemcpy2D()`
CUDA version of malloc

```
cudaMallocPitch( void** devPtr,  
    size_t* pitch,  
    size_t widthInBytes,  
    size_t height)
```

Device array

- This allocates at least \textit{width (in bytes) X height} array.
- The value returned in pitch is the width in bytes of the allocation.
- The above function determines the best pitch and returns it to the program.
- It is strongly recommends the usage of this function for allocating 2D (and 3D) arrays.
 (also take a look at \texttt{cudaMalloc3D()})
cudaError_t cudaMemcpy2D (void * dst,
 size_t dpitch,
 const void * src,
 size_t spitch,
 size_t width,
 size_t height,
 enum cudaMemcpyKind kind)

- **dst** - Destination memory address
- **dpitch** - Pitch of destination memory
- **src** - Source memory address
- **spitch** - Pitch of source memory
- **width** - Width of matrix transfer (in bytes)
- **height** - Height of matrix transfer (rows)
- **kind** - Type of transfer
Example: Allocation

```c
int main(int argc, char * argv[]) {
    float * A, *dA;
    size_t pitch;

    A = (float *)malloc(sizeof(float)*N*N);
    cudaMallocPitch(&dA, &pitch, sizeof(float)*N, N);

    //copy memory from unpadded array A of 760 by 760 dimensions
    //to more efficient dimensions on the device
    cudaMemcpy2D(dA, pitch, A, sizeof(float)*N, sizeof(float)*N, N, cudaMemcpyHostToDevice);

    ...
}
```
Example: Accessing

```c
__global__ void MyKernel(float* devPtr,
                        size_t pitch,
                        int width, int height) {

    for (int r = 0; r < height; ++r) {
        float* row = (float*)((char*)devPtr + r * pitch);
        for (int c = 0; c < width; ++c) {
            float element = row[c];
        }
    }
}
```
So..

Pitch is a good technique to speedup memory access
• There are two drawbacks that you have to live with:
 • Some wasted space
 • A bit more complicated elements access
Multi-GPU System
Nebulae: #10 in Top 500 list (June 2012)

Intel Xeon X5650 and Nvidia GPU Tesla c2050
Tsubame 2.0: #5 in Top 500 list

Intel Xeon X5670 and Nvidia GPU
Flavors

- Multiple GPUs in the same node (e.g. PC)
- Multi-node system (e.g. MPI).

Multi-GPU configuration is here to stay!
Hardware Example: Tesla S870 Server
Hardware Example:
Tesla S870 Server

Host System w/ 2 PCIe slots

Connected to a single-host
Hardware Example: Tesla S870 Server

Connected to a two host systems
Why Multi-GPU Solutions

• Scaling-up performance
• Another level of parallelism
• Power
• Reliability
// Run independent kernel on each CUDA device
int numDevs = 0;
cudaGetDeviceCount(&numDevs);
...
for (int d = 0; d < numDevs; d++) {
 cudaSetDevice(d);
 kernel<<<blocks, threads>>>(args);
}
CUDA Support

• `cudaGetDeviceCount(int * count)`
 – Returns in *count the number of devices

• `cudaGetDevice(int * device)`
 – Returns in *device the device on which the active host thread executes the device code.
CUDA Support

• `cudaSetDevice(devID)`
 – Device selection within the code by specifying the identifier and making CUDA kernels run on the selected GPU.

```c
size_t size = 1024 * sizeof(float);
cudaSetDevice(0); // Set device 0 as current
float* p0;
cudaMalloc(&p0, size); // Allocate memory on device 0
MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0
cudaSetDevice(1); // Set device 1 as current
float* p1;
cudaMalloc(&p1, size); // Allocate memory on device 1
MyKernel<<<1000, 128>>>(p1); // Launch kernel on device 1
```
Who Controls the GPU?

- Single CPU thread
- Multiple CPU threads belonging to the same process
- Different processes
Peer-to-Peer Access

Source: NVIDIA
CUDA Support:
Peer to peer memory Access

- Peer-to-Peer Memory Access
 - `cudaDeviceEnablePeerAccess(peer_device, 0)`

```c
cudaSetDevice(0); // Set device 0 as current
float* p0;
size_t size = 1024 * sizeof(float);
cudaMalloc(&p0, size); // Allocate memory on device 0
MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0
cudaSetDevice(1); // Set device 1 as current
cudaDeviceEnablePeerAccess(0, 0); // Enable peer-to-peer access
  // with device 0

// Launch kernel on device 1
// This kernel launch can access memory on device 0 at address p0
MyKernel<<<1000, 128>>>(p0);
```
What we want to do ...
Does the device support P2P?

cudaError_t cudaDeviceCanAccessPeer
(int* canAccessPeer,
 int device,
 int peerDevice)

• Returns 1 in canAccessPeer if device can access peerDevice.
• You need to check both directions.
cudaError_t cudaDeviceEnablePeerAccess (
 int peerDevice,
 unsigned int flags)

Access granted by this call is **unidirectional** (i.e. current device can access peer device)

Then ...

cudaError_t cudaDeviceDisablePeerAccess (
 int peerDevice)
CUDA Support
Peer to peer memory Copy

• Using cudaMemcpyPeer()
cudaMemcpyPeer (void * dst,
 int dstDevice,
 const void * src,
 int srcDevice,
 size_t count)

• This function is asynchronous with respect to the host.
• This function is serialized with respect to all pending and future asynchronous work into the current device.

Important: If GPU supports Unified Virtual Address, then no need to the above function.
(We will see shortly)
The Evolution of CPU-GPU Memory Operations
The Evolution of CPU-GPU Memory Operations

Milestones

• Traditional cudaMemcpy()
• Zero-copy
• Unified Virtual Address (CUDA 4.0 and up)
• Unified Memory (CUDA 6.0 and up)

We already saw this!
The Evolution of CPU-GPU Memory Operations

Milestones

• Traditional cudaMemcpy()
• Zero-copy
• Unified Virtual Address (CUDA 4.0 and up)
• Unified Memory (CUDA 6.0 and up)
Unified Virtual Address Space (UVA)

- From CUDA 4.0
- puts all CUDA execution, host and GPUs, in the same address space
- Requires Fermi-class GPU and above
 - computer capability 2.0 or higher
- Requires 64-bit application
- Call `cudaGetDeviceProperties()` for all participating devices and check unifiedAddressing flag
Unified Virtual Addressing
Easier to Program with Single Address Space

No UVA: Multiple Memory Spaces

UVA: Single Address Space
Easier Memory Access: UVA Zero-Copy

• UVA provides a single virtual memory address space for all memory in the system, and enables pointers to be accessed from GPU code no matter where they reside.

• Pointers returned by cudaHostAlloc() can be used directly from within kernels running on UVA enabled devices – Data cache in L2 of target device.
Easier Memory Copy: UVA Memory Copy

- **Between host and multiple devices:**

 cudaMemcpy(gpu0_buf, host_buf, buf_size, cudaMemcpyDefault)
 cudaMemcpy(gpu1_buf, host_buf, buf_size, cudaMemcpyDefault)
 cudaMemcpy(host_buf, gpu0_buf, buf_size, cudaMemcpyDefault)
 cudaMemcpy(host_buf, gpu1_buf, buf_size, cudaMemcpyDefault)

- **Between two devices:**
 cudaMemcpy(gpu0_buf, gpu1_buf, buf_size, cudaMemcpyDefault)

- cudaMemcpy() knows that our buffers are on different devices
- (UVA), will do a P2P copy
- Note that this will transparently fall back to a normal copy through the host if P2P is not available
The Evolution of CPU-GPU Memory Operations

Milestones

• Traditional cudaMemcpy()
• Zero-copy
• Unified Virtual Address (CUDA 4.0 and up)
• Unified Memory (CUDA 6.0 and up)

Source of the next few slides:
Unified Memory

Source: NVIDIA blogs: https://devblogs.nvidia.com/parallelforsall
Unified Memory

- Primitive version from Kepler architecture (CC 3.0 and up)
- Creates a pool of managed memory that is shared between the CPU and GPU.
- Managed memory is accessible to CPU and GPU with single pointers.
- Under the hood: data (granularity = pages) automatically migrates from CPU to GPU and among GPUs.
 - Pascal GPU architecture is the first with hardware support for virtual memory page faulting and migration.
Unified Memory

cudaError_t cudaMallocManaged(void** ptr, size_t size)

• **ptr** can be used by any GPU and CPU in the system.
• **Pascal GPU:**
 – Pages may not be created until they are accessed by the GPU or the CPU.
 – Pages automatically migrate to the device (or host) that access them.
• **Pre-PASCAL (i.e. Kepler and Maxwell):**
 – With single GPU, data will be allocated on the GPU device that is active when the call is made.
 – On multi-GPU systems, if some of the GPUs have peer-to-peer access disabled, the memory will be allocated so it is initially resident on the CPU.
Isn’t it like UVA?

- Unified memory depends on UVA.
- UVA does NOT move data automatically between CPU and GPU.
- Unified memory gives higher performance than UVA.
Advantages of Unified Memory

• Ease of programming
• Data is migrated on demand.
 – offer the performance of local data on the GPU
 – while providing the ease of use of globally shared data
• Very efficient with complex data structures (e.g. linked lists, structures with pointers, ...).

Note: The physical location of data is invisible to the program and may be changed at any time
Disadvantages of Unified Memory

- Carefully tuned CUDA program that uses streams to efficiently overlap execution with data transfers may perform better than a CUDA program that only uses Unified Memory.
How to allocated managed memory?

• **Option 1**: `cudaMallocManaged()` routine, which is semantically similar to `cudaMalloc()`

• **Option 2**: defining a global `__managed__` variable, which is semantically similar to a `__device__` variable
int main() {

 int *ret;

 cudaMallocManaged(&ret, 1000 * sizeof(int));

 AplusB<<< 1, 1000 >>>(ret, 10, 100);
 cudaDeviceSynchronize();

 for(int i=0; i<1000; i++)
 printf("%d: A+B = %d\n", i, ret[i]);

 cudaFree(ret);
 return 0;
}
int ret[1000];

__global__ void AplusB(int a, int b) {
 ret[threadIdx.x] = a + b + threadIdx.x;
}

int main() {

 AplusB<<<1, 1000 >>>>(10, 100);
 cudaDeviceSynchronize();

 for(int i=0; i<1000; i++)
 printf("%d: A+B = %d\n", i, ret[i]);

 return 0;
}
Final Notes About Unified Memory

- Coherence is ahead of performance in runtime implementation. Data has to be coherent across CPUs and GPUs in the system.

- Page faulting is implemented in systems with compute capability 6.x and up \(\rightarrow \) cudaMallocManaged will not run out of memory as long as there is enough system memory available for the allocation.

- Before that, all managed data must move to the GPU before kernel launch (automatically of course) \(\rightarrow \) Devices of compute capability lower than 6.x cannot allocate more managed memory than the physical size of GPU memory.
Dynamic Parallelism
The Usual case

• Data travels back and forth between the CPU and GPU many times.
• Reason: because of the inability of the GPU to create more work on itself depending on the data.
With Dynamic Parallelism:

- GPU can generate work on itself without involvement of CPU.
- Permits Dynamic Run time decisions.
- Kernels can start new kernels.
- Streams can spawn new streams.

CUDA 5.0 and later on devices of Compute Capability 3.5 or higher.
A kernel can call another kernel that calls another kernel up to 24 nested...
Subject to the availability of resources.
When do we need that?

- Nested for-loop for example
- The need for adaptive grids

Source: https://devblogs.nvidia.com/parallelforall/introduction-cuda-dynamic-parallelism/
Important

• As in the host, device kernel launch is asynchronous.

• Successful execution of a kernel launch means that the kernel is queued;
 – it may begin executing immediately,
 – or it may execute later when resources become available.

• Note that every thread that encounters a kernel launch executes it. So be careful!

• Child grids always complete before the parent grids that launch them, even if there is no explicit synchronization.
Important

• The CUDA Device Runtime guarantees that parent and child grids have a fully consistent view of global memory when the child starts and ends.

Important

• By default, grids launched within a thread block are executed sequentially.
• This happens even if grids are launched by different threads within the block.
• To deal with this drawback → streams
• Streams created on the host cannot be used on the device.
• Streams created in a block can be used by all threads in that block.

```c
cudaStream_t s;
cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);
```
Important

• If the parent kernel needs results computed by the child kernel to do its own work → it must ensure that the child grid has finished execution before continuing
 – by explicitly synchronizing using `cudaDeviceSynchronize(void)`.
 – This function waits for completion of all grids previously launched by the thread block from which it has been called.
Example

```c
void threadBlockDeviceSynchronize(void) {
    __syncthreads();
    if (threadIdx.x == 0) {
        cudaDeviceSynchronize();
        __syncthreads();
    }
}
```

To ensure all launches have been made.
What do we gain?

- Reduction in trips to CPU
- Recursion
- More freedom where data generated by the kernel decides how to partition the data for lower-level of the hierarchy.
How to Compile and Link?

```
nvcc -arch=sm_35 -rdc=true myprog.cu -lcudadevrt
```

generate relocatable device code, required for later linking
Hyper-Q
Till Fermi

- Only one work queue
- Even though Fermi allows 16 concurrent kernels.
- GPU resources are not fully utilized.
Fermi already supported 16 way concurrency of kernel launches from separate streams. Pending work is bottlenecked on 1 work queue. GPU’s computational resources not being utilized fully.
With Hyper-Q

- Starting with Kepler
- We can have connection from multiple CUDA streams, Message Passing Interface (MPI) processes, or multiple threads of the same process.
 - 32 concurrent work queues, can receive work from 32 process cores at the same time.
 - 3X Performance increase on Fermi
With Hyper-Q

With Hyper-Q

KEPLER
32 Simultaneous MPI Tasks
Stream Queue Management

Grid Management Unit
(1000s of pending grids)

Work Distributor
(16 active grids)
Conclusions

- There are many performance enhancement techniques in our arsenal:
 - Alignment
 - Streams
 - Asynchronous execution
 - Dynamic Parallelism
 - Multi-GPU