Practice Midterm Exam for Natural Language Processing

Name: _____________________________
Net ID _______________________

Instructions
In the actual midterm there will be 7 questions, each will be worth 15 points. You also get 10 point for signing your name on all test materials, seriously, because when students forget to sign their names, I have to somehow figure out whose test a particular piece of paper belongs to. The maximum score on the test will be 115. You will have approximately 1:15 minutes to complete this test.

This practice test will have a different number of problems that are intended to be of the same basic type of question as on the actual midterm. **THE PRACTICE TEST IS DESIGNED TO TAKE LONGER TO COMPLETE THAN THE ACTUAL TEST WOULD (AROUND 2 HOURS, RATHER THAN 1:15).**
The test materials will include this printout and one blank test booklet. I suggest that you fill in all answers directly on this printout and use the blank test booklet as scrap paper. However, if you run out of space, you have the option of using the test booklet. If you do this, please include a clear note on the test so I know where to look for your answer.

This test is an open book/open notes test: Please feel free to bring your text book, your notes, copies of class lectures and other reading material to the test. A calculator is also permitted and it is OK to look at materials on the web in order to read helpful information, being mindful of the time limit. Just don’t use a program that solves a problem for you, e.g., do not find a part of speech tagger and run it if asked to manually annotate mark parts of speech – that WOULD be cheating.

Answer all questions on the test. If you show your work and you make a simple arithmetic mistake, but it is clear you knew how to do it, you will get partial credit.
• William R. Breakey M.D.
• Pamela J. Fischer M.D.
• Leighton E. Cluff M.D.
• James S. Thompson, M.D.
• C.M. Franklin, M.D.
• Atul Gawande, M.D.
• Dr. Talcott
• Dr. J. Gordon Melton
• Dr. Etienne-Emile Baulieu
• Dr. Karl Thomae
• Dr. Alan D. Lourie
• Dr. Xiaotong Fei
• Doctor Dre
• Doctor Dolittle
• Doctor William Archibald Spooner
• Doctor No

Figure 1: Correct Instances of Doctors in Our Corpus

Question 1. Write a regular expression for identifying names of doctors in text. Your regular expression should match the examples in figure 1, but should not recognize either non-names (words lacking capital letters) or names that do not include the identifying title information (*Dr.*, *Doctor, M.D.*). Do your best to include information about spaces, hyphens, commas and periods, as per the examples.

`((Doctor|Dr\.)([A-Z][a-z\s]+)+|([A-Z][a-z\s]+)\+M\.D\.)`
Question 2. Assign Penn parts of speech tags (as per Table 1) to all the words in the following two sentences using the notation word/POS:

a. John/NNP and/CC Mary/NNP bought/VBD a/DT refrigerator/NN with/IN three/CD doors/NNS./PU

b. It/PRP was/VBD purchased/VBN from/IN a/DT very/RB small/JJ store/NN near/IN their/PRP$ house/NN./PU

Question 3. Mark the noun groups in the following sentence using BIO (beginning, intermediate, other) tags.

Mary B
has O
a B
room I
with O
a B
view I
and O
a B
bottle I
of O
beer B
Figure 2: Possible Answer to Question 4

Question 4. Draw a Phrase Structure Tree representing one parse of the following sentence. Make a list of the phrase structure rules that you are assuming.

John and Mary bought a refrigerator with three doors.

1. $S \rightarrow NP VP$
2. $NP \rightarrow NP CC NP$
3. $NP \rightarrow DT NN PP$
4. $NP \rightarrow CD NNS$
5. $NP \rightarrow NNP$
6. $VP \rightarrow VBD NP$
7. $PP \rightarrow IN NP$
8. $NNP \rightarrow John$
9. $NNP \rightarrow Mary$
10. $NN \rightarrow refrigerator$
11. $NNS \rightarrow doors$
12. $CC \rightarrow and$
13. $VBD \rightarrow bought$
14. $DT \rightarrow a$
15. $CD \rightarrow three$
16. $IN \rightarrow with$
Question 5. Calculate precision, recall and f-measure in order to score the following system against the answer key. Assume any item reported by the system and found in the answer key is correct.

The system reports that the following strings of words describing *attack* events:

1. *Jay Leno attacked Conan O’brien.*
2. *attacks by the U.S.-backed rebels* **Correct**
3. *the latest in a series of attacks in the 10-year-old civil war.* **Correct**
4. *Mr. Baldwin is also attacking the greater problem: lack of ringers.*
5. *the criminals were convicted for bombings.* **Correct**
7. *Groupon fires CEO Andrew Mason.*

The answer key includes the following strings of words describing *attack* events:

1. *the martians bombarded the Earth with death rays*
2. *attacks by the U.S.-backed rebels*
3. *the latest in a series of attacks in the 10-year-old civil war.*
4. *the criminals were convicted for bombings.*
5. *the allies launched a missile at the enemy stronghold.*

Precision = \(\frac{3}{7} \approx .429 \)

Recall = \(\frac{3}{5} = .6 \)

F-measure = \(\frac{2}{\frac{2}{\frac{3}{7}} + \frac{2}{5}} = \frac{2}{\frac{3}{7} + \frac{5}{3}} = .5 \)
Question 6. Fill in the CKY chart below for sentence *The rain rains down* assuming the following rules:

1. $S \rightarrow NP \ VP$
2. $NP \rightarrow N$
3. $NP \rightarrow DT\ N$
4. $VP \rightarrow V \ ADVP$
5. $VP \rightarrow V$
6. $ADVP \rightarrow ADV$
7. $DT \rightarrow the$
8. $N \rightarrow rain$
9. $N \rightarrow rains$
10. $V \rightarrow rain$
11. $V \rightarrow rains$
12. $ADV \rightarrow down$

<table>
<thead>
<tr>
<th></th>
<th>The</th>
<th>rain</th>
<th>rains</th>
<th>down</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DT</td>
<td>NP</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>N,V, NP, VP</td>
<td></td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>N,V, NP, VP</td>
<td></td>
<td></td>
<td>VP</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>ADV, ADVP</td>
<td></td>
</tr>
</tbody>
</table>
Question 7. Some defining characteristics of organization and facility as per the ACE guidelines are as follows:

- An Organization entity must have some formally established association. Typical examples are businesses, government units, sports teams, and formally organized music groups. Industrial sectors and industries are also treated as Organization entities. (ACE Entity Guidelines v6.6, page 7)

- A facility is a functional, primarily man-made structure. These include buildings and similar facilities designed for human habitation, such as houses, factories, stadiums, office buildings, gymnasiums, prisons, museums, and space stations; objects of similar size designed for storage, such as barns, parking garages and airplane hangars; elements of transportation infrastructure, including streets, highways, airports, ports, train stations, bridges, and tunnels. Roughly speaking, facilities are artifacts falling under the domains of architecture and civil engineering. (ACE Entity Guidelines v6.6, page 22)

In the following text from the May 3, 2012 New York Times (*A House Tour: Yes, That House*) mark the organizations by underlining them and writing an ORG immediately above them; mark the facilities by underlining them and writing FAC immediately above. If a particular piece of text is difficult to mark only ORG or only FAC, mark it ORG/FAC. Mark noun groups ignoring determiners including both names and common nouns representing FAC and ORG constituents. Do not mark pronouns.

After the 9/11 attacks, the system changed radically. Now, anyone who wants to tour the White House/FAC must apply through the office/ORG of his or her representative in Congress/ORG, which forwards the names to the White House/ORG for clearance...

Once they get the green light, visitors show up at the appointed time on 15th Street/FAC between E/FAC and F Streets/FAC and join the line to enter through the southeast gate/FAC.

Anyone who has flown on an airline/ORG in recent years will recognize the familiar territory of identity checks and electronic scans, although here you do get to keep your shoes on. At the head of the line, rangers from the National Park Service/ORG check photo IDs against a list of names.
Question 8. Assuming that the following sentence is at the beginning of a file, fill in the table below listing each token (word and punctuation), along with its start character offset and its end character offset. Note that there are more blank lines in the table than there are tokens. So it is expected that you will leave one or more line blank.

This sentence contains words, characters, spaces and punctuation.

<table>
<thead>
<tr>
<th>Token</th>
<th>Start Offset</th>
<th>End Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>This</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>sentence</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>contains</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>words</td>
<td>23</td>
<td>28</td>
</tr>
<tr>
<td>,</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>characters</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>,</td>
<td>40</td>
<td>41</td>
</tr>
<tr>
<td>spaces</td>
<td>42</td>
<td>48</td>
</tr>
<tr>
<td>and</td>
<td>49</td>
<td>52</td>
</tr>
<tr>
<td>punctuation</td>
<td>53</td>
<td>64</td>
</tr>
<tr>
<td>.</td>
<td>64</td>
<td>65</td>
</tr>
</tbody>
</table>
Question 9. Given the training data below, execute the following 3 steps: (a) calculate the likelihood probabilities for each word given each POS; (b) draw a finite state machine where states are POS and edges are labeled with transition probabilities; (c) draw a chart where the columns are positions in the sentence and the rows are names of states (start, end, POS tags) and fill in the probability scores assigned by the Viterbi algorithm assigning POS tags to the string *flying planes*.

Training Data:

- *buffalo/NNS flying/VBG is/VBZ dangerous/JJ*
- *flying/JJ planes/NNS are/VBZ numerous/JJ*
- *I/PRP saw/VBZ Mary/NNP flying/VBG planes/NNS*
- *He/PRP planes/VBZ shelves/NNS*

Likelihood for Question 9

```
  JJ    dangerous: .33  flying: .33  numerous: .33
  NNP   Mary: 1
  NNS   buffalo: .25  planes: .5  shelves: .25
  PRP   I: .5  he: .5
  VBG   flying: 1
  VBZ   is: .25  are: .25  saw: .25  planes: .25
```
Figure 4: Viterbi for Question 9

Question 10. Calculate the TFIDF for the terms listed below for documents 1 to 4. There are 10,000 documents in a collection. The number of times each of these terms occur in documents 1 to 4 as well as the number of documents in the collections are listed below. Use this information to fill in the TFIDF scores in the table below.

Number of Documents Containing Terms:
- **reverse cascade**: 3 \(\text{IDF} = \log(10000/3) \approx 8.11 \)
- **full shower**: 50 \(\text{IDF} = \log(10000/50) \approx 5.30 \)
- **half bath**: 10 \(\text{IDF} = \log(10000/10) \approx 6.91 \)
- **multiplex**: 3 \(\text{IDF} = \log(10000/3) \approx 8.11 \)

Table:

<table>
<thead>
<tr>
<th>Term</th>
<th>Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Doc 1</td>
</tr>
<tr>
<td>reverse cascade</td>
<td>8</td>
</tr>
<tr>
<td>full shower</td>
<td>3</td>
</tr>
<tr>
<td>half bath</td>
<td>0</td>
</tr>
<tr>
<td>multiplex</td>
<td>2</td>
</tr>
</tbody>
</table>

TFIDF for terms in documents

<table>
<thead>
<tr>
<th>Term</th>
<th>Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Doc 1</td>
</tr>
<tr>
<td>reverse cascade</td>
<td>8.11 * 8 = 64.88</td>
</tr>
<tr>
<td>full shower</td>
<td>5.30 * 3 + 15.90</td>
</tr>
<tr>
<td>half bath</td>
<td>0</td>
</tr>
</tbody>
</table>