Short Talks about Final Projects

Adam Meyers
New York University
Outline

• Preliminary Schedule of Talks
• Structure of Talks
• Sample Slides
Schedule of Talks

- Student Talks presented for about 3 classes
 - Dec 7, Dec 12 and Dec 13
 - Preliminary Schedule on next 3 slides
- Organized by approximate topic
 - Different talks may be grouped together same group
- Please make schedule changes by email
 - If project is miscellaneous — email me your topic
 - Currently distributed across days, but I would like to put similar topics together
 - If you need a different day – email me
- Timing different for multi & single person projects
 - Single person: 3 minutes plus 1 minute for questions
 - Multi person: 4 minutes plus 1 minute for questions
 - Extra time allowed for time overages and transitions
Please Send Me Your Slides

• Please send me your slides
 – pdf format preferred
 – please send at least one day before your talk
 – this saves time and makes the talks go smoother
 in general
• You can send me updated versions later
• You can use your own laptop if you prefer
Talks on Wednesday, Dec 7

- Natural Language Generation (Estimated Time: 17 minutes)
 - Naif Alrayes and Kwesi F Daniel
 - Emma J Dickson
 - Herbert Li
 - Bryan G Scott

- Sentiment Analysis: (Estimated Time: 27 minutes)
 - Raylen S Margono and Ignacio J Streuly and Vladimir Bien-Aime
 - Paul Pelayo
 - Colton Paul, Kate Feng, Ziming Sheng
 - David Estrich, Raphael Rios, David Zhu
 - Anna Fenske
 - Hongsheng Chen
Talks on Monday, Dec 12

• Document Classification: (Estimated Time 8 minutes)
 – Wanjing Ma
 – Curtis M Mann
• Information Extraction: (Estimated Time: 12 minutes)
 – Tahsin Akanda
 – Weiyi Lu
 – Shishir R Neelakant
• Reference Resolution: (Estimated Time: 5 minutes)
 – Alec Eckmann, Feifan Shi, Longkun Yang
• Annotation: (Estimated Time: 4 minutes)
 – Dora Sun
• Attachment Ambiguity: (Estimated Time: 5 minutes)
 – Grace Elizabeth Matuszyk and Ryan T Yue
• Miscellaneous (Estimated Time: 8 minutes)
 – Kyle Hunt
 – Uriel Restrepo
Talks on Tuesday, Dec 13

- Summarization and Text Simplification (Estimate Time 10 minutes)
 - Keon Kim and Mengqi Wang
 - Marcus Arellano and Alexandru Grigoras
- Question Answering and Information Retrieval: (Estimate Time: 9 minutes)
 - Sabid Manick
 - Jinha Hwang and Sang Jun Yum
- Deep Learning: (Estimated Time: 12 minutes)
 - Jinkyung Lim
 - Bosen Yang
 - Kevin L Zhuang
- Cryptology: (Estimated Time: 5 minutes)
 - Masrour Basith and Alec Vulfson
- Evaluation (Estimated Time: 4 minutes)
 - Noah K Frazier-Logue
- Miscellaneous (Estimated Time 20 minutes)
 - Zachary Agop Khorozian
 - Relvin Samal
 - Asia Suarez
 - Xiaoyue Guan
 - Ella Sergeevna Kuzmenko
Suggested Structure of a 3 minute talk

• Estimate rate of talk: 1 slide per minute.
 – So a 3 minute talk should be about 3 slides in addition to any slides you don't discuss

• Possible structure:
 – Slide 1: title and author(s) – Don't discuss
 – Slide 2: problem statement
 – Slide 3: your approach: methods, resources used (lexicons, corpora, programs incorporated), features of data used, algorithms implemented, evaluation
 – Slide 4: One line conclusion
 – Slide 5: References – Don't discuss
Possible Structure for Multi Person Project Talk

- 4 minutes or 1 Minute Per Slide
- Sample Structure
 - Slide 1: title and author(s) – Don't discuss
 - Slide 2: problem statement
 - Slide 3: your approach: methods, resources used (lexicons, corpora, programs incorporated), features of data used, algorithms implemented
 - Slide 4: Roles of Each Participant
 - Slide 5: One line conclusion
 - Slide 6: References – Don't discuss
Other Factors

• Talks in the same topic areas
 – There may be redundancies between talks. You could discuss this and have some of these redundancies be factored out and presented by one person (1 or 2 minutes could be added to the schedule for this). I can provide email addresses if this helps.
 • Project mergers are permitted
 • Other types of coordination are permitted, e.g., a shared evaluation for different methods
 – You could learn from the other talks about resources that will help you with your own project.
• You don't have time to give a detailed account of your approach
• The best talks will communicate the problem and approach to solving it in a conversational manner
• Imagine you explaining this to a non-technical people with short-attention spans: people at a party, relatives, etc.
 – But perhaps a little more technical than that
• Your final project may change a lot from the one you present as a talk, e.g., you may end up incorporating comments from other students or answering their concerns
Optional

• Tech@NYU is hosting a DemoDays this weekend on December 4th
 – Application:
 • https://docs.google.com/forms/d/e/1FAIpQLSediEQDWvkZfjOhty0LfnnkQRU-Cg6QwCjI1ji_1Llf9dCqyQ/viewform?c=0&w=1
 – Face book event:
 • https://www.facebook.com/events/286226538440479/
• Follow these links if you are interested in presenting work or attending the event
Sample 3 + 1 Talk

• Next 5 slides represent a hypothetical talk based on some of my MT slides
Sentence Alignment Using Gale Shapey Stable Marriage Algorithm

Adam Meyers
New York University
Sentence Alignment Problem

- Bitexts = Source Language file and sentence by sentence translation
- Sentences may be in different orders
- In order to “train” statistical systems, we need to know which source language sentence corresponds to which target language sentence

Run John run Corre Sara corre
See John run Ve Sara corre
Run Sally run Corre Juan corre
See Sally run Ve Juan corre
Run Spot run Corre Mancha corre
See Spot run Ve Mancha corre
...
...
My Approach

• Score matches by overlap in a bilingual lexicon (supplement with automatic acquisition of additional entries) using Dice

D\text{ice} = \frac{2 \times |\text{Match}(S, T)|}{|S| + |T|}

• Compare scores of neighboring sentences in 10 X 10 array
 – Choose best match for first sentence by Gale Shapley algorithm, then advance 10 sentence window

• Gale Shapley maximizes choices between 2 sets of competing items, where there are optimal choices, e.g., like a arranging marriages between potential sets of mates
Evaluation and Conclusion

- Corpus: Spanish/English Microsoft Help Text
- Evaluation Metrics: Precision, Recall, F-measure
- Manually aligned Microsoft Help bitext for development
 – 1350 English and 1341 Spanish Sentences
- Manually aligned bitext used for testing
 – 184 English and 181 Spanish sentences
- We achieved F-measure of 95%
Selected References