Administrative Details

• Time and Place: Wednesday October 26, 2016
• Ask clarification questions during test
 – I especially want to fix errors such as typos
• Open Book, Open Notes
 – You can bring materials
 – Search the web
 – Do simple calculations with a calculator
 – DO NOT:
 • communicate with others (texting, email, phone)
 • write/run actual programs
• Put your name and ID number on all test materials
• I will take attendance: please bring your ID
The Purpose of the Midterm?

• Pedagogical purposes
 – Track whether students learned parts of curriculum and what may need further clarification
 – Provide a motivating force for students to study the “important” parts of the curriculum
 – Clarify how to prepare students to do final projects

• Administrative purpose: determine 1/4 of grade

• Possible conflict
 – A difficult test makes pedagogical sense
 – An “acceptable” average grade may make administrative sense

• Current Strategy: Motivate test based on pedagogical objectives, but make it as open book as possible
 – You can bring materials, search the web, etc., but I will want you to solve the problems posed by the test
Outline

• Linguistic Resources & Descriptive Linguistics
 – Especially Corpus Annotation
• Rules used by Automated Procedures
 – Ones covered in Class
• Algorithms Discussed in Class
• How does Evaluation Work
• Sample Midterm
Annotation

• You should be able to write usable specifications
• You should be able to annotate based on specifications
• You should understand some of the mechanics
 – Character offsets
 – A Markup language
 – BIO tags
• You should understand the difference between training, development and test corpora
Descriptive Linguistics

• The basic parts of speech and phrasal categories.
 – The difference between a determiners and an adjective
 – Verbs, prepositions, coordinate conjunctions
• How to manually divide sentences into tokens
• You should know how to identify the head of a phrase
• You should be able to draw a phrase structure tree modeling the linguistic analysis of a sentence
Rules: Regular Expressions

• You should know how to write a basic regular expression
 – Decent coverage, but not over-generate too much
• You should know how to write a phrase structure rule including at least:
 – Context free rules
 – Left (or right) regular rules
• For a regular expression, you should be able to identify a set of phrase structure rules that describe the same language (set of strings)
Algorithms: Deterministic Finite State Machine

• Given:
 – Finite State Machine (FSM)
 – Input String

• Would the FSM recognize the string?

• Which sequence of states would be entered before recognition was complete?

• How would the FSM on the next slide process:
 – AababAB
 – AABB
DFSA for Regexp: $A(ab)^*ABB$?
Algorithms: Context-Free Generator

• Show the steps for randomly generating a sentence given:
 – A lexicon and a context-free grammar with start symbol S
• The algorithm expands each non-terminal into a randomly chosen right hand side.
• Going left to right, the first non-terminal symbol is always expanded first.
• The mechanism (as discussed in class) is to place each right hand side on top of the stack with the left-most symbol at the top of the stack.
Example of Generator

• Add S to top of empty stack
 – Stack is now: S

• Substitute NP VP for S
 – Stack is now: NP VP

• Substitute DT N PP for NP
 – Stack is now: DT N PP VP

• Substitute DT with the, pop off the (terminal)
 – Stack is now: N PP VP

• Etc.
Algorithms: The CKY parsing algorithm

- Fill in the triangular chart given a (short) sentence and a set of context-free rules
- Remember
 - How the chart encodes start and end positions
 - That each rule is in Chomsky Normal Form
 - i.e., is binary branching
- See the next slide
6th Iteration of CKY Algorithm

<table>
<thead>
<tr>
<th>The clam's group had knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6</td>
</tr>
<tr>
<td>0 D [0,1] NP [0,2] POSSP [0,3] NP [0,4] S [0,5] S [0,6]</td>
</tr>
<tr>
<td>1 N, NP [1,2] POSSP [1,3] NP [1,4] S [1,5] S [1,6]</td>
</tr>
<tr>
<td>2 POSS [2,3]</td>
</tr>
<tr>
<td>4 V, VP [4,5] VP [4,6]</td>
</tr>
<tr>
<td>5 N,NP [5,6]</td>
</tr>
</tbody>
</table>
Viterbi Decoding of HMM for *rose pickles*

- **Likelihood:**
 - *rose*: NNP .01, NN .02, VBD .05
 - *pickles*: NNP .001, NNS .03, VBZ .05

- **Transition Probabilities:**
Rose Pickles

- **Likelihood:**
 - *rose*: NNP .01, NN .02, VBD .05
 - *pickles*: NNP .001, NNS .03, VBZ .05
- **Fill in:** \(\text{max (previous X transition X likelihood)} \)

```
• Likelihood:
  – *rose*: NNP .01, NN .02, VBD .05
  – *pickles*: NNP .001, NNS .03, VBZ .05
• Fill in: max (previous X transition X liklihood)
```
Rose/NNP Pickles/VBZ

- **Likelihood:**
 - *rose*: NNP .01, NN .02, VBD .05
 - *pickles*: NNP .001, NNS .03, VBZ .05

- Fill in: max (previous X transition X likelihood)
Common Evaluation Metrics

• If all instances are classified
 – Accuracy = Correct/All-Instances

• If only some instances are classified
 – Precision = Correct/Instances in System Output
 – Recall = Correct/Instances in Answer Key
 – F-measure = Mean of Precision and Recall
 • Harmonic Mean of Precision and Recall
 –\[\frac{2}{\left(\frac{1}{\text{precision}} + \frac{1}{\text{recall}} \right)} \]
Sample Precision and Recall

- System for finding holiday names
- Exactly 10 correct holiday names in hand-coded corpus (the answer key)
- The system marks 12 holiday names, 8 of which match the ones in the answer key.
 - Precision = 8/12 = 0.67
 - Recall = 8/10 = 0.80
 - F-measure = 2/(0.80+0.67) = 0.73
TFIDF

- TFIDF – Property of Term with respect to a document
 - keyword suitability, representativeness of a topic, etc.
 - Uses: Doc Retrieval, Term Extraction, etc.
- TF = frequency in a document
- IDF = number of documents in sample divided by number of documents containing word
- TFIDF = TF * log(IDF)
- Example: “rock” occurs 10 times in document X. It occurs in 100 out of 3000 documents in collection. TFIDF = 10*log(3000/100) = 34.01
- *Use natural logarithms just to be standard (easier to grade)
 - Systems get same results (e.g., same ranking) using any base
Cosine Similarity Between Query and Document

\[\text{Similarity}(A, B) = \frac{\sum_i a_i \times b_i}{\sqrt{\sum_i a_i^2 \times \sum_i b_i^2}} \]

Example:
- the terms in the vectors include: animal, vegetable, mineral, monkey, golf enthusiast
- The vector for the query is: \([0,0,0,34,.8]\)
- The vector for a given document is: \([1,2,3,4,5]\)
- What is the similarity?
Sample Midterm

• Sample midterm & answers online
• The sample may take longer to complete than the actual in-class midterm – it serves a different function than the actual midterm.
• For example, there are 10 questions on the sample midterm, but there will only be 7 or 8 on the actual midterm
General Test-taking Advice

• Test is a game –
 – not worth getting tense about
 – Staying calm makes it easier to think clearly

• Time may be an issue
 – Finish as many questions as possible
 – Budget time
 • 75 minutes/7 questions ≈ 10 minutes/question

• Show your work
 – It makes it easier for me to give partial credit