In homework 4, we designed a data structure supporting the following operations:

- **BUILD(A[1...n])**: Initializes the data structure with the elements of the array A in time $O(n)$.
- **INSERT(x)**: Inserts the element x into the data structure in time $O(\log n)$, where n is the number of elements stored in the data structure.
- **MEDIAN**: Returns the median1 in time $O(1)$ of the currently stored elements.

In this problem we assume that all elements are integer numbers from 1 to 10^6, and we will design a data structure that supports the same set of operations but inserts an element in constant time.

(a) (3 points) Describe a data structure such that you can perform the operations BUILD, INSERT, and MEDIAN with running times as required below.

Solution: INSERT YOUR SOLUTION HERE

(b) (3 points) BUILD running in time $O(n)$.

Solution: INSERT YOUR SOLUTION HERE

(c) (1 points) INSERT running in time $O(1)$, and

Solution: INSERT YOUR SOLUTION HERE

(d) (3 points) MEDIAN running in time $O(1)$.

Solution: INSERT YOUR SOLUTION HERE

1The median of n elements is the $\lceil \frac{n}{2} \rceil$-largest element.
Solutions to Problem 2 of Homework 5 (14 points)

Name: Name (NetID) Due: Tuesday, October 11
Collaborators: NetID1, NetID2

The standard array-based implementation of MinHeap supports, in particular, the following operations:

- **ExtractMin**: Returns a minimum element and removes it from the heap in time \(O(\log n)\).
- **Insert**(\(x\)): Inserts the element \(x\) into the heap in time \(O(\log n)\).
- Let \(A\) be the array that represents the heap. Recall that the root of the heap is \(A[1]\), and the indices of the children of \(i\) are \(2i\) and \(2i + 1\).

Consider the task of, on input array-based MinHeap, outputting the \(k\)th smallest element in the heap.

(a) (2 points) Develop an algorithm that outputs the \(k\)th smallest element in the heap in time \(O(k \log n)\), justify its correctness. (You are allowed to change the original heap.)

Solution: INSERT YOUR SOLUTION HERE

(b) (2 points) Show how to find the 2nd smallest element in the heap in time \(O(1)\), justify your answer.

Solution: INSERT YOUR SOLUTION HERE

(c) (2 points) Show how to find the 3rd smallest element in the heap in time \(O(1)\), justify your answer.

Solution: INSERT YOUR SOLUTION HERE

(d) (8 points) Using intuition developed in parts (b) and (c), develop an algorithm that outputs the \(k\)th smallest element in the heap in time \(O(k \log k)\). Write pseudo-code of your algorithm, justify its correctness.

Hint: Introduce an auxiliary heap. Remember that the heap is array-based, thus you can find children of an element of the heap in constant time.

Solution: INSERT YOUR SOLUTION HERE

2Here \(n\) denotes the number of elements in the heap.
Assume that we are given \(n \) bolts and \(n \) nuts of different sizes, where each bolt exactly matches one nut. Our goal is to find the matching nut for each bolt. The nuts and bolts are too similar to compare directly; however, we can test whether any nut is too big, too small, or the same size as any bolt.

(a) (4 points) Prove that in the worst case, \(\Omega(n \log n) \) nut-bolt tests are required to correctly match up the nuts and bolts.

Solution: INSERT YOUR SOLUTION HERE

(b) (6 points) Prove that in the worst case, \(\Omega(n + k \log n) \) nut-bolt tests are required to find \(k \) arbitrary matching pairs.

Solution: INSERT YOUR SOLUTION HERE

(c) (5 points) Give a randomized algorithm that runs in expected time \(O(n) \) and finds the \(k \)-th largest nut given any integer \(k \). You may assume that it is possible to efficiently sample a random nut/bolt.

Solution: INSERT YOUR SOLUTION HERE
(a) (3 points) **HALVING** is the operation that takes an array A with n distinct numbers and separates it into two half-sized\(^3\) arrays A_0 and A_1, where all elements of A_0 are smaller than all elements of A_1. (Note that it is not required that A_0 and A_1 are sorted.)

Prove that **HALVING** can be done in linear time.

Solution: INSERT YOUR SOLUTION HERE

Give a linear-time algorithm that transforms any given array A with n distinct elements into a roller coaster array B. Namely, B must contain exactly the same n distinct elements as A, but must also be a roller coaster.

Solution: INSERT YOUR SOLUTION HERE

(c) (8 points) Describe a linear-time algorithm which, given an array A with n distinct elements and a number $k < n$, returns k elements of A which are closest to the median of A (excluding the median itself).

For example, if $A = (10, 5, 11, 1, 6, 7, 25)$ and $k = 2$, the median of A is 7, and 2 closest numbers to 7 are 6 and 5.

Solution: INSERT YOUR SOLUTION HERE

\(^3\)The size of A_0 is $\lfloor n/2 \rfloor$, the size of A_1 is $\lceil n/2 \rceil$.