A number $k > 1$ is called *humble* if the only prime factors of k are 3 and 5. Consider the task of, on input n, outputting the n smallest humble numbers and the following algorithm to do it:

\[
\text{Humble}(n):
\begin{align*}
\text{count} &= 0, \text{prevOutput} = 0 \\
\text{Heap.Insert}(3) \\
\text{Heap.Insert}(5) \\
\text{while } (\text{count} < n) \\
\text{cur} &= \text{Heap.ExtractMin} \\
\text{if } \text{cur} \neq \text{prevOutput} \text{ then} \\
\text{output } \text{cur} \\
\text{Heap.Insert}(3*\text{cur}) \\
\text{Heap.Insert}(5*\text{cur}) \\
\text{count} &= \text{count} + 1 \\
\text{prevOutput} &= \text{cur}
\end{align*}
\]

(a) (4 points) Argue that the algorithm above (1) outputs numbers in increasing order, (2) does not output any number twice, (3) only outputs humble numbers, and (4) outputs all of the first n humble numbers.

Solution: INSERT YOUR SOLUTION HERE

(b) (2 points) Derive an *exact* (i.e., no O-notation) bound on the number of times \text{Heap.Insert} is called.

Solution: INSERT YOUR SOLUTION HERE

(c) (2 points) Bound *exactly* the number of times \text{Heap.ExtractMin} is called.
(Hint: Use (b).)

Solution: INSERT YOUR SOLUTION HERE

(d) (2 points) Use the answers to (b) and (c) above to argue that \text{Humble} runs in $O(n \log n)$ time. Assume that arithmetic can be performed in $O(1)$ time.

Solution: INSERT YOUR SOLUTION HERE
In this task you will design a data structure supporting the following operations:

- **BUILD**(A[1...n]): Initializes the data structure with the elements of the array A.
- **INSERT**(x): Inserts the element x into the data structure.
- **MEDIAN**: Returns the median\(^1\) of the currently stored elements.

In the following, you are allowed to use the standard heap operations from CLRS Chapter 6 (incurred the corresponding running times).

(a) (4 points) Describe a data structure such that you can perform the operations BUILD, INSERT, and MEDIAN with running times as required below.

Hint: Use a min-heap and a max-heap.

Solution: INSERT YOUR SOLUTION HERE

Describe in pseudo-code implementations of

(b) (3 points) **BUILD** running in time \(O(n)\) assuming that you can query an \(O(n)\) magic box for finding the median of an \(n\)-element array,\(^2\)

Solution: INSERT YOUR SOLUTION HERE

(c) (3 points) **INSERT** running in time \(O(\log n)\), where \(n\) is the number of elements in the data structure.

Solution: INSERT YOUR SOLUTION HERE

(d) (3 points) **MEDIAN** running in time \(O(1)\).

Solution: INSERT YOUR SOLUTION HERE

\(^1\)The median of \(n\) elements is the \(\lceil \frac{n}{2} \rceil\)-largest element.

\(^2\)Such an algorithms will be discussed in class in a few weeks’ time.
We say that an array A is c-nice for a constant c if for all $1 \leq i < j \leq n$ such that $j - i \geq c$, we have that $A[i] \leq A[j]$. For example, a 1-nice array is completely sorted (in ascending order). In this problem we will sort such c-nice arrays A using INSERTIONSORT and QUICKSORT and compare the results.

(a) (4 Points) In asymptotic notation (remember that c is a constant) what is the worst-case running time of INSERTIONSORT on a c-nice array?

Solution: INSERT YOUR SOLUTION HERE

Consider now a run of QUICKSORT on a c-nice array (where the pivot element is chosen (deterministically) as the last element of the array).

(b) (2 points) Derive a lower bound on the rank q of the pivot.3

Solution: INSERT YOUR SOLUTION HERE

(c) (3 points) Argue that after partitioning, the two subarrays $A[1 \ldots q - 1]$ and $A[q + 1 \ldots n]$ to the left and to the right of the pivot, respectively, are both c-nice.

Solution: INSERT YOUR SOLUTION HERE

(d) (4 points) From the lecture you already know that the running time of quicksort on sorted arrays is $\Theta(n^2)$. Let $B(n)$ denote the best-case running time of QUICKSORT on c-nice array with n elements. Using your results from (b) and (c), derive a recurrence for $B(n)$ and solve it.

Solution: INSERT YOUR SOLUTION HERE

(e) (1 point) Asymptotically, which is faster on c-nice arrays: the worst-case running time of insertion sort or the best-case running time of quicksort?

Solution: INSERT YOUR SOLUTION HERE

3Among n elements, the i^{th} smallest element has rank i.
Recall that quicksort selects an element as pivot, partitions an array around the pivot, and recurses on the left and on the right of the pivot. Consider an array that contains many duplicates and observe that for such an array, quicksort recurses on all duplicates of the pivot element. In this task you are to develop a new partitioning procedure that works well on arrays with many duplicates. The idea is to partition the array into elements less than the pivot, equal to the pivot and greater than the pivot.

(a) (4 points) Develop this idea into a partitioning algorithm and provide pseudocode. Make sure your algorithm is in-place (i.e., do not use more than a constant amount of extra space).

Solution: INSERT YOUR SOLUTION HERE

(b) (2 points) Use your partitioning algorithm to come up with a sorting algorithm. Analyze the worst-case running time of your algorithm.

Solution: INSERT YOUR SOLUTION HERE

(c) (2 points) Find an array on which the original quicksort runs in time $\Theta(n^2)$ but your algorithm from (b) in $\Theta(n)$.

Solution: INSERT YOUR SOLUTION HERE