Let n be a multiple of m. Design an algorithm that can multiply an n-bit integer with an m-bit integers in time $O(nm^{\log_2 3 - 1})$.

Solution: INSERT YOUR SOLUTION HERE
An \(n \)-tromino is a \(2^n \times 2^n \) “chessboard of unit squares with one corner removed” (figure below drawn for \(n = 3 \)). Assume that initially you are given a 1-tromino (i.e., a simple \(L \)-shaped tile of area 3 drawn on the right), but you have a friendly genie whom you can ask to perform the following two operations in any order:

- **Duplicate**: This operation takes an object as input, and creates a second identical copy of this object.
- **Glue**: This operation takes two objects as input, and glues them together (along the sides, without any overlaps) in a manner specified by you.

(a) (6 points) Design a recursive algorithm \(\text{TROMINO}(n) \) that creates an \(n \)-tromino from 1-tromino using the a minimum number of calls to the genie. You only need to specify the top level of the recursion, without the need to explicitly “unwind” the recursion all the way to \(n = 1 \). (Hint: First step is to \text{DUPLICATE} the original 1-tromino, as otherwise you “lose” it in the recursive call(s), and you might need it in the “conquer” step.)

Solution: INSERT YOUR SOLUTION HERE

(b) (4 points) Give a recurrence relation for the number of calls \(T(n) \) to the genie, and solve it.

Solution: INSERT YOUR SOLUTION HERE
An array \(A[0 \ldots (n-1)] \) is called rotation-sorted if there exists some cyclic shift \(0 \leq c < n \) such that \(A[i] = B[(i + c \mod n)] \) for all \(0 \leq i < n \), where \(B[0 \ldots (n-1)] \) is the sorted version of \(A \).\(^1\) For example, \(A = (2, 3, 4, 7, 1) \) is rotation-sorted, since the sorted array \(B = (1, 2, 3, 4, 7) \) is the cyclic shift of \(A \) with \(c = 1 \) (e.g., \(1 = A[4] = B[(4 + 1 \mod 5)] = B[0] = 1 \)). For simplicity, below let us assume that \(n \) is a power of two (so that can ignore floors and ceilings), and that all elements of \(A \) are distinct.

(a) (4 points) Prove that if \(A \) is rotation-sorted, then one of \(A[0 \ldots (n/2-1)] \) and \(A[n/2 \ldots (n-1)] \) is fully sorted (and, hence, also rotation-sorted with \(c = 0 \)), while the other is at least rotation-sorted. What determines which one of the two halves is sorted? Under what condition both halves of \(A \) are sorted?

Solution: INSERT YOUR SOLUTION HERE

(b) (8 points) Assume again that \(A \) is rotation-sorted, but you are not given the cyclic shift \(c \). Design a divide-and-conquer algorithm to compute the minimum of \(A \) (i.e., \(B[0] \)). Carefully prove the correctness of your algorithm, write the recurrence equation for its running time, and solve it. Is it better than the trivial \(O(n) \) algorithm? (Hint: Be careful with \(c = 0 \) an \(c = n/2 \); you might need to handle them separately.)

Solution: INSERT YOUR SOLUTION HERE

\(^1\)Intuitively, \(A \) is either completely sorted (if \(c = 0 \)), or (if \(c > 0 \)) \(A \) starts in sorted order, but then “falls off the cliff” when going from \(A[n - c - 1] = B[n - 1] = \text{max} \) to \(A[n - c] = B[0] = \text{min} \), and then again goes in increasing order while never reaching \(A[0] \).
Find a divide-and-conquer algorithm that finds the maximum and the minimum of an array of size n using at most $3n/2$ comparisons (between elements of the array). (Note that we are not asking for an iterative algorithm. We are asking for you to explicitly use recursion.) Derive an exact recurrence for the number of comparisons of your algorithm and prove it using induction. (Hint: Your conquer step should make a constant number of comparisons. Be careful for what n you stop recursing.)

Solution: INSERT YOUR SOLUTION HERE