For each of the following pairs of functions $f(n)$ and $g(n)$, state whether f is $O(g)$; whether f is $o(g)$; whether f is $\Theta(g)$; whether f is $\Omega(g)$; and whether f is $\omega(g)$. (More than one of these can be true for a single pair!)

(a) $f(n) = 3n^9 + \log(n) + 38; \quad g(n) = \frac{4n^{20} + 5n^2 + 4}{111} - 52n.$

Solution: INSERT YOUR SOLUTION HERE

(b) $f(n) = \log(n^2 + 3n); \quad g(n) = \log(n^4 - 1).$

Solution: INSERT YOUR SOLUTION HERE

(c) $f(n) = \log(2^n + n^2); \quad g(n) = \log(n^{372}).$

Solution: INSERT YOUR SOLUTION HERE

(d) $f(n) = n^{37} \cdot 2^n; \quad g(n) = n^{2} \cdot 5^n.$

Solution: INSERT YOUR SOLUTION HERE

(e) $f(n) = (n^n)^3; \quad g(n) = n^{(n^3)}.$

Solution: INSERT YOUR SOLUTION HERE
Let $A[1, \ldots, n]$ be an array of n distinct numbers. If $i < j$ and $A[i] > A[j]$, then the pair (i, j) is called an inversion of A.

(a) (2 points) List all inversions of the array $\langle 8, 5, 2, 7, 9 \rangle$.

Solution: INSERT YOUR SOLUTION HERE

(b) (3 points) Which arrays with distinct elements from the set $\{1, 2, \ldots, n\}$ have the smallest and the largest number of inversions and why? State the expressions exactly in terms of n.

Solution: INSERT YOUR SOLUTION HERE

(c) (5 points) What is the relationship between the running time of Insertion-Sort and the number of inversions I in the input array? Justify your answer.

Solution: INSERT YOUR SOLUTION HERE
The following two functions both take as arguments two n-element arrays A and B:

MAGIC-1(A, B, n)

```java
for i = 1 to n
    for j = 1 to n
        if $A[i] \geq B[j]$ return FALSE
    return TRUE
```

MAGIC-2(A, B, n)

```java
temp := A[1]
for i = 2 to n
    if $A[i] > temp$ then temp := $A[i]$
for j = 1 to n
    if temp $\geq B[j]$ return FALSE
return TRUE
```

(a) (2 points) Both of these procedures return TRUE if and only if the same condition holds on the arrays A and B holds. Describe this condition (in words).

Solution: INSERT YOUR SOLUTION HERE ☐

(b) (5 points) Analyze the worst-case running time for both algorithms using the Θ-notation.

Solution: INSERT YOUR SOLUTION HERE ☐

(c) (3 points) Does the situation change if we consider the best-case running time for both algorithms?

Solution: INSERT YOUR SOLUTION HERE ☐
Consider sorting n numbers stored in array A by first finding the largest element of A and exchanging it with the element in $A[n]$. Then find the second largest element of A and exchange it with $A[n-1]$. Continue in this manner for the first $n-1$ elements of A.

(a) (5 points) Write (non-recursive) pseudocode for this algorithm, which is known as selection sort. What loop invariant does this algorithm maintain? Why does it need to run for only the first $n-1$ elements, rather than for all n elements? Give the best-case and worst-case running times of selection sort in Θ-notation.

Solution: INSERT YOUR SOLUTION HERE

(b) (2 points) Compare the running time of selection sort to the one of insertion sort.

Solution: INSERT YOUR SOLUTION HERE

(c) (5 points) Devise a recursive variant of your algorithm in (a) by following the divide-and-conquer paradigm. Find a recurrence relation describing the running time of your algorithm and solve it.

Solution: INSERT YOUR SOLUTION HERE