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GPUs & Databases



GPUs with DataBases

"Harvard Middle Eastern Studies student Todd Mostak's
first tangle with big data didn't go well; trying to process 
and map 40 million geolocated tweets from the Arab 
Spring uprising took days. So while taking a database 
course across town at MIT, he developed a massively 
parallel database that uses GeForce Titan GPUs to do the 
data processing. The system sees 70x performance 
increases over CPU-based systems, and can out crunch a 
1000 node MapReduce cluster, in some cases. All for 
around $5,000 worth of hardware. Mostak plans to release 
the system under an open source license; you can play with 
a data set of 125 million tweets hosted at Harvard's 
WorldMap and see the millisecond response time.

Source: Slashdot, April 22nd, 2013 
http://slashdot.org/story/13/04/22/2225240/harvardmit-student-creates-gpu-database-hacker-style

http://data-informed.com/fast-database-emerges-from-mit-class-gpus-and-students-invention/
http://worldmap.harvard.edu/tweetmap/


GPUs with DataBases

Map-D, a startup based in Cambridge, Mass., has built 
a high-speed GPU in-memory database and geospatial 
visualization tool that can track more than a 
billion tweets worldwide ðand provide real -time 
interactive visual analysis of an almost boundless 
number of socio -economic queries. 

Source: 
http://blogs.nvidia.com/blog/2013/11/20
/juicing-big-data-startup-builds-gpu-database-to-visualize-the-world-on-twitter/



How Can GPUs Help With Databses?

ÅSorting

ÅAccelerating SQL

Source: Accelerating SQL Database Operations on a GPU with CUDA , P. Bakkumand K. 
Skadron, Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics 
Processing Units, 2010.



Example

Galactica : A GPU Parallelized Database
Accelerator

Keh Kok Yong, Ettikan K. Karuppiah, Simon
Chong-Wee See

August 2014 BigDataScience '14: 
Proceedings of the 2014 International 
Conference on Big Data Science and 
Computing



Enables Galacticato connect to any database

Basic parsing and positioning operations: 
Åbreak down the input user queries 
Åcollects the decomposed SQL objects 
Ådetermines either CPU or GPU 

executable instructions to be used. 
ÅProduces an execution query plan.

Data pre-processed and stored 
in column-based orientation

for optimizing parallel processing by GPU





GPUs & MapReduce



MapReduce and GPUs

ÅMapReduce Programming Model
ïEmerged with the development of Data -

Intensive Computing

ïPioneered by Google
ïMap()
ÅGenerates a large number of (key, value) 

pairs
ïReduce()
ÅMerges the values associated with the same 

key



Example: Distributed Grep
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Example: Distributed Word Count
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GPUs & Supercomputers



GPUs in Supercomputers

ÅStrongest supercomputers now are 
based on GPUs

ÅNo shared memory ĄMPI is the way to 
go 

ÅNodes connected by sophisticated 
interconnection

ÅCan we combine CUDA and MPI?



Blue Waters Computing System
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Blue Waters and Titan Computing 
Systems

NCSA ORNL
System Attribute Blue Waters Titan

Vendors Cray/AMD/NVIDIA Cray/AMD/NVIDIA
Processors Interlagos/Kepler Interlagos/Kepler

Total Peak Performance (PF) 11.1 27.1
Total Peak Performance (CPU/GPU) 7.1/4 2.6/24.5

Number of CPU Chips 48,352 18,688
Number of GPU Chips 3,072 18,688

Amount of CPU Memory (TB) 1511 584

Interconnect 3D Torus 3D Torus

Amount of On-line Disk Storage (PB) 26 13.6
Sustained Disk Transfer (TB/sec) >1 0.4-0.7
Amount of Archival Storage 300 15-30
Sustained Tape Transfer (GB/sec) 100 7



CUDA-based cluster
ÅEach node contains N GPUs
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MPI Model

ÅMany processes distributed in a cluster

ÅEach process computes part of the output

ÅProcesses communicate with each other

ÅProcesses can synchronize
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MPI + CUDA: The Easy Way

ÅCudaand MPI can be considered 
separate entities
ïCUDA handles parallelization on GPU

ïMPI handles parallelization over nodes

ÅUse one MPI process per GPU and 
accelerate the computational kernels 
with CUDA



MPI + CUDA: The Hard Part

ÅTechnology is moving forward quickly
ïDifferent compute capability generations
ïDifferent levels of support for GPUDirect
ïNew MPI libraries with CUDA support are 

emerging

ÅMachines differ from each other
ïNumber of GPUs and CPUs per node differ
Å1 GPU per 2 processors to 8 GPUs per 2 processors
ÅSelecting active GPU on multi GPU nodes

ÅScalability



GPUs & Finance



GPU in Finance

ÅWhy? Opportunity & Risk!
ïOpportunity: doing things faster Ą better 
Ą more opportunities

ïRisk: market risk analysis

ÅReal time

ÅRelative to multicore : GPU is easier 
better or cheaper!



GPU in Finance

ÅExample of applications:
ïPricing

ïTrading strategy

ïRisk analysis

ïData visualization

ïHigh-frequency trading

ïData mining

ÅMonte Carlo Ą Library CUDA THRUST



Power and Temperature



The Power-Wall

ÅWhy do we have power -wall?

ÅTechniques to solve the problem

ÅReal-life example processor

ÅWhat can you do in software? 
ïIs there power -aware software?
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Increasing number
of cores

Source: http://www.prism.gatech.edu/~shong9/ISCA_2010.pptx  (disappeared!)



Power is also increasing!

Source: http://www.prism.gatech.edu/~shong9/ISCA_2010.pptx  (disappeared!)



The Problem

ÅCooling for GPUs is becoming 
prohibitively expensive.
ïExasperated by the low profit margins in 

these market segments

ÅTodayõs cooling solutions are designed 
for worst -case behavior.

ÅReducing the hot spots will help reduce 
cooling requirements.



Why Power Aware?

ÅServers and Workstations
ðPackaging cost

ðHigh temperature = more expensive cooling 
system

ÅEmbedded Devices
ðBattery Life

ðNo place for fans, 

etc.



Mooreõs Law

More transistors/mm2
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Computing
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So é What is it about Mooreõs law?

ÅPower and temperature are becoming 
crucial
ÅGPU power consumption = 

Runtime power + idle power
ÅPower = dynamic + static
ÅGiven power budget, how to get best 

performance?
ÅGiven required performance, how to 

achieve it with lowest power?



GeForce285 GTX

Fully exercise
computing units

FMA
with only
single thread

Copies a chunk
of 200MB to GPU 
DRAM

Mult of
two  8K
matrices



Be Careful!

ÅStatic power is no longer trivial

ÅHigher utilization does not necessarily 
mean higher performance but for sure 
means higher power 
consumption/dissipation

ÅGoal: maximize performance/watt



Power-Aware Computing is:

Reducing power without losing 
performance



Dynamic Power Consumption

2

dynamic DDP CV fa= A



Dynamic Power Consumption

2

dynamic DDP CV fa=

depends on the wire lengths

supply voltage

A

Åbetween 0 and 1
Åhow often wires transition

clock frequency



Static Power Consumption

Å20% or more in sub -micron era

ÅMostly leakage
ïrepresents the power dissipated by a 

transistor whose gate is intended to be off



Static power/ Dynamic Power
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Temperature

ÅLost power

ÅLeakage increases by order of 
magnitude at high temperature

ÅHigher temperature = lower mean -time -
to -failure (MTTF)

ÅWe need temperature -aware computing



Temperature -> Hot Spot

applubenchmark on a single core (source: Kevin Skadron¢ǳǘƻǊƛŀƭ ƛƴ L{/!Ωлпύ



What To Do About Dynamic 
Power

ÅDFVS

ÅReducing switching activity



What To Do About Leakage?

ÅStacking transistor

ÅDynamically resized caches (mainly I -
caches)
ïgated Vdd

ïNon-state -preserving  

ÅDrowsy caches
ïScale supply voltage to reduce leakage



What To Do About Temperature?

ÅBetter sensors position

ÅPredicting temperature at places 
without sensors

ÅAvoid hot spots

ÅMust be taken care of from design -time



CPU-GPU Interaction



GPU Reliability



Reliability

ÅError -rates are expected to increase with 
future process technology
ÅReliability in GPGPUs is not as addressed as 

other aspects
ÅGraphics applications may be fault tolerant, but 

other applications running on GPGPUs are not.
ÅLarge scale GPU failure after 

shipment/deployment is not uncommon
ÅHow can the hardware help?
ÅCan software help in this?



We target permanent
faults of SMs,

From: ArtemDurytskyy, Mohamed Zahran, and RameshKarri, Improving Robustness of 
GPUs by Making Use of Faulty Parts, Proc. International Conference on Computer Design
(ICCD11), October 2011. 



Typical GPU: Massive Parallelism

In this paper
we target permanent
faults of SMs
within a TPC.

In our experiment we found that a loss of an SM in 
an 8-SM GPU can cause performance loss as high as 

16%!



First Solution: 
Turn off the faulty part.

Can we do better?

What if one of the SMs fails??



Better Solution: 
Use faulty parts to give hints to 
non-faulty part to speed them up

What if one of the SMs fails??



A Hint??

ÅWhat? is a piece of information which 
can be used to speed up the execution

ÅWhy? A hint can enhance performance 
of execution by prefetching from 
memory, etc.

ÅHow? Make a faulty SM generate hints 
to be used by another SM



Which Hints to Use?

ÅWe explored several types
ÅBased on their effectiveness and 

hardware requirements we narrowed 
them down to 3
ïInstruction cache prefetch to the SM 

instruction cache
ïInter -SM warp memory coalescing
ïInstruction prefetch to the shared L2 

cache



Why Targeting SM and not SP?

ÅSPs are usually executing the same code 
and work in lockstep

ÅSo we cannot speedup another SP in the 
same SM



Instruction Classifications 

TEX:  Texture ςMEM: loads and stores
SFU/DPU: Special function and Divide and Multiply units
Control: branches - MAD: Multiply and Add ς
ALU: Arithmetic and Logic



Speedup



What Do you think you can do as 
a programmer regarding

Reliability?



At the frontiers of research:
GPUs and other accelerators



Questions

ÅWhat is your wish list for GPUs in terms 
of software?

ÅWhat is your wish list for GPUs in terms 
of hardware?



Current Parallel Computing Landscape
ÅGPUs

o Multi -GPU systems
o Heterogeneous GPUs
o 3D stacked memory (in 2016)
o NVLINK (in 2016)

ÅMassive multicore chips
o Intel Xeon Phi
o Tilera

ÅFPGAs
o Good compromise between:
Åsoftware on general -purpose processors (slow but 

flexible)
ÅApplication -specific integrated circuits (fast but 

expensive)

ÅAutomata processing (soon to be available)

Toward more
heterogeneous 

systems



Automata Processing 

ÅImplements non -deterministic finite 
automata in hardware.
ïCan be used to implement complex regular 

expressions

ÅProgrammed in xml like language 
(Automata Network Markup Language)

ÅVery suitable for applications driven by 
pattern matching

Source: Micron


