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GPUs & Databases



GPUs with DataBases

"Harvard Middle Eastern Studies student Todd Mostak's
first tangle with big data didn't go well; trying to process

and map 40 million geolocated tweets from the Arab
Spring uprising took days. So while taking a database
course across town at MIT, he developed a massively
parallel database that uses GeForce Titan GPUs to do the
data processing. The system sees 70x performance
Increases over CPU-based systems, and can out crunch a
1000 node MapReduce cluster, in some cases. All for
around $5,000 worth of hardware. = Mostak plans to release
the system under an open source license; you can play with
a data set of 125 million tweets hosted at  Harvard's
WorldMap and see the millisecond response time.

Source: Slashdot, April 22 2013
http://slashdot.org/story/13/04/22/2225240/harvardmistudentcreatesgpu-databasehackerstyle


http://data-informed.com/fast-database-emerges-from-mit-class-gpus-and-students-invention/
http://worldmap.harvard.edu/tweetmap/

GPUs with DataBases

Map-D, a startup based in Cambridge, Mass., has built
a high-speed GPU inmemory database and geospatial
visualization tool that can track more than a

billion tweets worldwide & and provide real-time
Interactive visual analysis of an almost boundless
number of socio -economic queries.

Source:
http://blogs.nvidia.com/blog/2013/11/20
/juicing-big-data-startup-buildsgpu-databaseto-visualizethe-world-on-twitter/




How Can GPUs Help With Databses?

A Sorting

A Accelerating SQL
GPU Speedup per Query
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SourceAccelerating SQL Database Operations on a GPU with ClPBakkumand K.
SkadronProceedings of the 3rd Workshop on Gendtalpose Computation on Graphics
Processing Units, 2010.



Example

Galactica: A GPU Parallelized Database
Accelerator

Keh Kok Yong, Ettikan K. Karuppiah, Simon
ChongWee See

August 2014 BigDataScience '14.
Proceedings of the 2014 International
Conference on Big Data Science and
Computing



EnablegGalacticao connect to any database
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Database Parallel Instruction Scheduler
Connector
Conventional Parallel
Query Query Processor Query Processor
processing Unit
CPU Instruction GPU Instruction

CPU Host Memory

Basic parsing anc! positioning op_erations. P
Abreak down the input user queries - Gpmemw
Acollects the decomposed SQL objects w

Adetermines either CPU or GPU Conventional 6

DB Warehouse

executable instructions to be used.
AProduces an execution query plan.

Data preprocessed and store
in columnbased orientation
for optimizing parallel processing by GPU
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GPUs & MapReduce



MapReduce and GPUSs

A MapReduce Programming Model

I Emerged with the development of Data -
Intensive Computing

I Ploneered by Google

I Map()
AGe_nerates a large number of (key, value)
pairs
I Reduce()

AMerges the values associated with the same
key



Example
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Example: Distributed Word Count
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GPUs & Supercomputers



GPUs In Supercomputers

A Strongest supercomputers now are
based on GPUSs

A No shared memory A MPI is the way to
go

A Nodes connected by sophisticated
Interconnection

A Can we combine CUDA and MPI?



Blue Waters Computing System
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Blue Waters and Titan Computing

NCSA

System Attribute Blue Waters

Vendors Cray/AMD/NVIDIA
Processors InterlagogKepler
Total Peak Performance (PF) 11.1
Total Peak Performance (CPU/GPU) 7.1/4
Number of CPU Chips 48,352
Number of GPU Chips 3,072
Amount of CPU Memory (TB) 1511
Interconnect 3D Torus
Amount of Online Disk Storage (PB) 26
Sustained Disk Transfer (TB/sec) >1
Amount ofArchival Storage 300

Sustained Tape Transfer (GB/sec) 100

ORNL
Titan

Cray/AMD/NVIDIA
InterlagogKepler

27.1
2.6/24.5

18,688
18,688

584
3D Torus

13.6
0.4-0.7
15-30
.



CUDA-based cluster
A Each node contains N GPUs

PU 0

CPUO CPUM

\ Host Memory /

PU 0

CPUO

\ Host Memory /




MPI| Model
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A Each process computes part of the output
A Processes communicate with each other
A Processes can synchronize

18



MPI + CUDA: The Easy Way

A Cudaand MPI can be considered
separate entities
I CUDA handles parallelization on GPU
I MPI handles parallelization over nodes

A Use one MPI process per GPU and
accelerate the computational kernels
with CUDA



MPI + CUDA: The Hard Part

A Technology is moving forward quickly
I Different compute capabllity generations
I Different levels of support for GPUDirect
I New MPI libraries with CUDA support are
emerging
A Machines differ from each other

I Number of GPUs and CPUs per node differ

A1 GPU per 2 processors to 8 GPUs per 2 processors
A Selecting active GPU on multi GPU nodes

A Scalability



GPUs & Finance



GPU In Finance

A Why? Opportunity & Risk!

I Opportunity: doing things faster A better
A more opportunities

I Risk: market risk analysis
A Real time

A Relative to multicore : GPU is easier
better or cheaper!



GPU In Finance

A Example of applications:
I Pricing
I Trading strategy
I Risk analysis
I Data visualization
I High-frequency trading
I Data mining
A Monte Carlo A Library CUDA THRUST




Power and Temperature



The Power-Wall

A Why do we have power -wall?
A Technigues to solve the problem
A Real-life example processor

A What can you do in software?
I Is there power -aware software?
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The Problem

A Cooling for GPUs is becoming
prohibitively expensive.
I Exasperated by the low profit margins in
these market segments

ATodayds cooling sol ut
for worst -case behavior.

A Reducing the hot spots will help reduce
cooling requirements.



Why Power Aware?

A Servers and Workstations

0 Packaging cost
0 High temperature = more expensive cooling

SySte m Cooling cost vs Thermal dissipation
A Embedded Devices |
& Battery Life

ling Solutio
—_ =]
(]

o No place for fans,

etc. : —




More transistors/mn¥




Mooreos Law

More activity/area Higher speed

More transistors/mny



Mooreos Law

More activity/area Higher speed

More transistors/mny
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Mooreos Law

More activity/area > Higher speed

How Can We Guarantee The Green Path?

More transistors/mn¥

N

More switches/cycle

T

More power density

T

Higher temperature

T

Lower speed



PowerAware
Computing

| J Temperature
Dynamic Power Static Power
Consumption Consumption



So é What | S It ab

A Power and temperature are becoming
crucial

A GPU power consumption =
Runtime power + idle power
A Power = dynamic + static

A Given power budget, how to get best
performance?

A Given required performance, how to
achieve it with lowest power?



Average Power (watts)
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Be Careful!

A Static power is no longer trivial

A Higher utilization does not necessarily
mean higher performance but for sure
means higher power
consumption/dissipation

A Goal: maximize performance/watt



Power-Aware Computing Is:

Reducing power without losing
performance



Dynamic Power Consumption
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Dynamic Power Consumption
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Static Power Consumption

A 20% or more in sub -micron era

A Mostly leakage

I represents the power dissipated by a
transistor whose gate is intended to be off

P—=1V (ﬁe_? Vin /(aky T]) )




Static power/ Dynamic Power
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Temperature

A Lost power

A Leakage increases by order of
magnitude at high temperature

A Higher temperature = lower mean -time -
to-failure (MTTF)

A We need temperature -aware computing



Temperature -> Hot Spot
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What To Do About Dynamic

Power

A DFVS
A Reducing switching activity



What To Do About Leakage?

A Stacking transistor

A Dynamically resized caches (mainly | -
caches)
| gated Vdd
I Non-state -preserving
A Drowsy caches
| Scale supply voltage to reduce leakage



What To Do About Temperature?

A Better sensors position

A Predicting temperature at places
without sensors

A Avoid hot spots
A Must be taken care of from design -time
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GPU Reliability



Reliability

A Error -rates are expected to increase with
future process technology

A Reliability in GPGPUs is not as addressed as
other aspects

A Graphics applications may be fault tolerant, but
other applications running on GPGPUs are not.

A Large scale GPU failure after
shipment/deployment is not uncommon

A How can the hardware help?
A Can software help in this?



From:Artem Durytskyy MohamedZahran andRameslkKarri, Improving Robustness of
GPUs by Making Use of Faulty Pariroc. International Conference on Computer Design
(ICCD11), October 2011.
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Typical GPU: Massive Parallelism

HVIDIA TESLA GPU Architecture

Thread ng Cluster (TPC)

Thread Pracessing Cluster (TPC]

Geamatry Contrallar

Gematry Cortralkarn
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Processing Cluster (TPC)
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In this paper

we target permanent

faults of SMs
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Thread Processing Cluster (TPC)

Geamerry Contnoller

Streaming Multiprocessor Controller (SME)

5M sSM
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What if one of the SMs fails?’

First Solution:
Turn off the faulty part.

Can we do better?



Thread Processing Cluster (TPC)

Geamerry Contnoller

Streaming Multiprocessor Controller (SME)
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What if one of the SMs fails?’

Better Solution:
Use faulty parts to givanints to
non-faulty part to speed them up



A HInt??

A What? is a piece of information which
can be used to speed up the execution

AWhy? A hint can enhance performance
of execution by prefetching from
memory, etc.

A How? Make a faulty SM generate hints
to be used by another SM



Which Hints to Use?

A We explored several types

A Based on their effectiveness and
hardware requirements we narrowed
them down to 3

I Instruction cache prefetch tothe SM
Instruction cache

I Inter -SM warp memory coalescing

I Instruction prefetch to the shared L2
cache




Why Targeting SM and not SP?

A SPs are usually executing the same code
and work In lockstep

A So we cannot speedup another SP in the
same SM




Kemel Execution
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Speedup
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What Do you think you can do as
a programmer regarding
Reliability?



At the frontiers of research:
GPUs and other accelerators



Questions

A What is your wish list for GPUs in terms
of software?

A What is your wish list for GPUs in terms
of hardware?



Current Parallel Computing Landscape

A GPUs
o0 Multi -GPU systems
0 Heterogeneous GPUs
o 3D stacked memory (in 2016)
0 NVLINK (in 2016) Toward more

A Massive multicore chips hetiysgtsrr:]ious
o0 Intel Xeon Phi
o Tilera

A FPGAs

0 Good compromise between:

A software on general -purpose processors (slow but
flexible)

A Application -specific integrated circuits (fast but
expensive)

A Automata processing (soon to be available)




Automata Processing

A Implements non -deterministic finite
automata in hardware.

I Can be used to implement complex regular
expressions

A Programmed in xml like language
(Automata Network Markup Language)

A Very suitable for applications driven by
pattern matching

Source: Micron



