CSCI-GA.3033-004

Graphics Processing Units (GPUs): Architecture and Programming

CUDA

Advanced Techniques 3

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com

Some slides are used and slightly modified from:
NVIDIA teaching kit
In This Lecture ...

• More about performance
• Parallel Patterns
• Error Handling
More About Performance

Hardware configuration can be safely ignored when designing a software for correctness but must be considered in the code structure when designing for peak performance.
Some Insights About Performance

- Throughput
- Latency
- Occupancy
- Utilization
It is a common belief that ...

• More threads is better
 – because it needs more threads to hide latency

But is it always true?
CUDA Basic Linear Algebra Subroutines

Multiplication of two large matrices, single precision (SGEMM):

<table>
<thead>
<tr>
<th></th>
<th>CUBLAS 1.1</th>
<th>CUBLAS 2.0</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threads per block</td>
<td>512</td>
<td>64</td>
<td>8x smaller thread blocks</td>
</tr>
<tr>
<td>Occupancy (G80)</td>
<td>67%</td>
<td>33%</td>
<td>2x lower occupancy</td>
</tr>
<tr>
<td>Performance (G80)</td>
<td>128 Gflop/s</td>
<td>204 Gflop/s</td>
<td>1.6x higher performance</td>
</tr>
</tbody>
</table>

Batch of 1024-point complex-to-complex FFTs, single precision:

<table>
<thead>
<tr>
<th></th>
<th>CUFFT 2.2</th>
<th>CUFFT 2.3</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threads per block</td>
<td>256</td>
<td>64</td>
<td>4x smaller thread blocks</td>
</tr>
<tr>
<td>Occupancy (G80)</td>
<td>33%</td>
<td>17%</td>
<td>2x lower occupancy</td>
</tr>
<tr>
<td>Performance (G80)</td>
<td>45 Gflop/s</td>
<td>93 Gflop/s</td>
<td>2x higher performance</td>
</tr>
</tbody>
</table>
Latency Vs Throughput

- Latency (how much time) is **time**
 - instruction takes 4 cycles per warp
 - memory takes 400 cycles

- Throughput (how many operations per cycle or second) is **rate**
 - Arithmetic: $1.3 \text{ Tflop/s} = 480 \text{ ops/cycle (op=multiply-add)}$
 - Memory: $177 \text{ GB/s} \approx 32 \text{ ops/cycle (op=32-bit load)}$
Hide Latency is ...

- Doing other operations while waiting
- This will make the kernel runs faster
- **But** not at the peak performance

What can we do??
Little's Law

 Needed parallelism = Latency x Throughput
Examples from GPU

<table>
<thead>
<tr>
<th>GPU model</th>
<th>Latency (cycles)</th>
<th>Throughput (cores/SM)</th>
<th>Parallelism (operations/SM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G80-GT200</td>
<td>≈24</td>
<td>8</td>
<td>≈192</td>
</tr>
<tr>
<td>GF100</td>
<td>≈18</td>
<td>32</td>
<td>≈576</td>
</tr>
<tr>
<td>GF104</td>
<td>≈18</td>
<td>48</td>
<td>≈864</td>
</tr>
</tbody>
</table>

Average latency of a computational operation

Less operations means idle cycle
So …

• Higher performance does not mean more threads but **higher utilization**
• Utilization is related to **parallelism**
• We can increase utilization by
 – increasing throughput
 • Instruction level parallelism
 • Thread level parallelism
 – decreasing latency

Occupancy is not utilization, but one of the contributing factors.
__global__ void MyKernel(int *d, int *a, int *b) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 d[idx] = a[idx] * b[idx]; }

int main() {
 int numBlocks;
 int blockSize = 32;
 int device;
 cudaDeviceProp prop;
 int activeWarps;
 int maxWarps;
 cudaGetDevice(&device);
 cudaGetDeviceProperties(&prop, device);
 cudaOccupancyMaxActiveBlocksPerMultiprocessor(
 &numBlocks,
 MyKernel,
 blockSize,
 0);
 activeWarps = numBlocks * blockSize / prop.warpSize;
 maxWarps = prop.maxThreadsPerMultiProcessor / prop.warpSize;
}
cudaOccupancyMaxActiveBlocksPerMultiprocessor

• From CUDA 6.5
• Produces an occupancy prediction based on:
 – the block size
 – shared memory usage of a kernel
• Reports occupancy in terms of the number of concurrent thread blocks per multiprocessor
• Don’t forget: it is just a prediction!
• Arguments:
 1. pointer to an integer (where #blocks will be reported)
 2. kernel
 3. block size
 4. dynamic shared memory per block in bytes
How about memory?

maximizing overall memory throughput for the application

= minimize data transfers with low bandwidth

host \leftrightarrow device

Global mem access
This means ... Typically

1. Load data from device memory to shared memory.
2. Synchronize with all the other threads of the block so that each thread can safely read shared memory locations that were populated by different threads.
3. Process the data in shared memory.
4. Synchronize again if necessary to make sure that shared memory has been updated with the results.
5. Write the results back to device memory.
But accessing global memory is a necessary evil ... So:

- Can we apply the same technique (i.e. Little’s law) to memory?

Needed parallelism = \textbf{Latency} \times \textbf{Throughput}

<table>
<thead>
<tr>
<th></th>
<th>Latency</th>
<th>Throughput</th>
<th>Parallelism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic</td>
<td>\approx 18 cycles</td>
<td>32 ops/SM/cycle</td>
<td>576 ops/SM</td>
</tr>
<tr>
<td>Memory</td>
<td>< 800 cycles (?)</td>
<td>< 177 GB/s</td>
<td>< 100 KB</td>
</tr>
</tbody>
</table>

This means that to hide memory latency you need to keep 100KB in flight. But less if the kernel is compute bound!
How Can You Get 100KB From Threads?

• Use more threads
• Use more instructions per thread
• Use more data per thread
Now for some commonly used parallel patterns

- Histogram
- Convolution
- Reduction tree
- Prefix sum
Histogram
In a Nutshell

• Important and very useful computation:
 – For each element in the data set, use the value to identify a “bin counter” to increment.

• A good example for understanding output interference in parallel computation
Example

• Define the bins as four-letter sections of the alphabet: a-d, e-h, i-l, n-p, ...
• For each character in an input string, increment the appropriate bin counter.
• In the phrase “Programming Massively Parallel Processors” the output histogram is shown below:
Implementation 1

- Partition the input into sections
- Have each thread to take a section of the input
- Each thread iterates through its section.
- For each letter, increment the appropriate bin counter
Implementation 1

programming
massively
parallel processors

Thread 0
Thread 1
Thread 2
Thread 3

0 0 0 3 0 0 0 0
a-d e-h i-l m-p q-t u-x y-z
Evaluation of Implementation 1

- Possible collision
- Poor memory access efficiency:
 - Adjacent threads do not access adjacent memory locations
 - Accesses are not coalesced
 - DRAM bandwidth is poorly utilized
Implementation 2

• Interleaved partitioning:
 – All threads process a contiguous section of elements
 – They all move to the next section and repeat
Implementation 2

threaded massively parallel...
Evaluation of Implementation 2

+ Better memory access patterns
- Still possibility of collision due to data races
Implementation 3

- We need to deal with data races:
 - read-modify-write operations

thread1: Old \leftarrow Mem[x]
 New \leftarrow Old + 1
 Mem[x] \leftarrow New

thread2: Old \leftarrow Mem[x]
 New \leftarrow Old + 1
 Mem[x] \leftarrow New
Implementation 3

• We need atomic operation for read-modify-write.

• A read-modify-write operation performed by a single hardware instruction on a memory location address
 – Read the old value, calculate a new value, and write the new value to the location

• The hardware ensures that no other threads can perform another read-modify-write operation on the same location until the current atomic operation is complete
 – Any other threads that attempt to perform an atomic operation on the same location will typically be held in a queue
 – All threads perform their atomic operations serially on the same location
Implementation 3

• Atomic operations in CUDA
 – Atomic add, sub, inc, dec, min, max, exch (exchange)
 – CAS (compare and swap)
 • 3 args: address, compare, val
 • reads a value from address (old value)
 • computer: Old = compare ? val : old

• Example:
 – int atomicAdd(int* address, int val);
 – unsigned int atomicAdd(unsigned int* address, unsigned int val);
 – atomicSub, atomicExch, atomicMin, ... atomicAnd, AtomicOr, ...

• atomicAdd for double precision floating-point numbers requires CC 6.0 or higher
__global__ void histo_kernel(unsigned char *buffer,
 long size, unsigned int *histo)
{
 int i = threadIdx.x + blockIdx.x * blockDim.x;

 // stride is total number of threads
 int stride = blockDim.x * gridDim.x;

 // All threads handle blockDim.x * gridDim.x
 // consecutive elements
 while (i < size) {
 int alphabet_position = buffer[i] - "a";
 if (alphabet_position >= 0 && alphabet_position < 26)
 atomicAdd(&histo[alphabet_position/4], 1);
 i += stride;
 }
}
About Atomic Operations

• An atomic operation on a DRAM location starts with a read, which has a latency of a few hundred cycles.
• The atomic operation ends with a write to the same location, with a latency of a few hundred cycles.
• During this whole time, no one else can access the location → serialization!
• Shorter latency is services from L2 cache.
• Much shorter latency if the operation is on shared memory (100x higher throughput than global and 10x than L2).
Evaluation of Implementation 3

+ No data race
+ Coalesced memory access
- Performance loss due to serialization
Implementation 4

Privatization

Heavy contention and serialization

Block 0 Block 1 ... Block N

Much less contention and serialization

Copy 0 Copy 1 ... Copy N

Atomic Updates

Final Copy

Much less contention and serialization

Final Copy
Implementation 4

• Privatization: a very important use case for shared memory

• Cost
 – Overhead for creating and initializing private copies
 – Overhead for accumulating the contents of private copies into the final copy

• Benefit
 – Much less contention and serialization in accessing both the private copies and the final copy
 – The overall performance can often be improved more than 10x
Implementation 4

• Create private copies of the histo[] array for each thread block

```c
__global__ void histo_kernel(unsigned char *buffer,
                             long size, unsigned int *histo)
{
    __shared__ unsigned int histo_private[7];
```
Implementation 4

- Create private copies of the histo[] array for each thread block

```c
__global__ void histo_kernel(unsigned char *buffer,
                             long size, unsigned int *histo)
{
    __shared__ unsigned int histo_private[7];

    if (threadIdx.x < 7) histo_private[threadIdx.x] = 0;
    __syncthreads();
```

Initialize the bin counters in the private copies of histo[]
Implementation 4

```c
int i = threadIdx.x + blockIdx.x * blockDim.x;
// stride is total number of threads
    int stride = blockDim.x * gridDim.x;
while (i < size) {
    atomicAdd( &private_histo[buffer[i]/4], 1);
    i += stride;
}
```

Build the private histogram
Implementation 4

// wait for all other threads in the block to finish
__syncthreads();

if (threadIdx.x < 7) {
 atomicAdd(&histo[threadIdx.x],
 private_histo[threadIdx.x]);
}

Build the final histogram
About Privatization

- Privatization is a powerful and frequently used technique for parallelizing applications.
- The operation needs to be associative and commutative.
- The private histogram size needs to be small.
- Fits into shared memory.
- What if the histogram is too large to privatize?
 - Sometimes one can partially privatize an output histogram and use range testing to go to either global memory or shared memory.
What we learned from the histogram example

• **Atomic operations** may be needed → sacrificing some performance for correctness

• **Privatization** can sometimes reduce the performance loss due to serialization caused by atomic operations.
Pattern: Convolution
Convolution

• An Array operation
• Output data element = weighted sum of a collection of neighboring input elements.
• The weights are defined by an input mask array.
• Usually used as filters to transform signals (or pixels or ...) into more desirable form.
Convolution
Convolution can also be 2D.
Convolution

Matrix N:

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 4 & 5 & 6 & 7 & 8 & 9 \\
4 & 5 & 6 & 7 & 8 & 5 & 6 \\
5 & 6 & 7 & 8 & 5 & 6 & 7 \\
6 & 7 & 8 & 9 & 0 & 1 & 2 \\
7 & 8 & 9 & 0 & 1 & 2 & 3 \\
\end{array}
\]

Matrix P:

\[
\begin{array}{c}
321 \\
\end{array}
\]

Matrix M:

\[
\begin{array}{cccc}
1 & 2 & 3 & 2 \\
2 & 3 & 4 & 3 \\
3 & 4 & 5 & 4 \\
2 & 3 & 4 & 3 \\
1 & 2 & 3 & 2 \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 4 & 9 & 8 \\
4 & 9 & 16 & 15 \\
9 & 16 & 25 & 24 \\
8 & 15 & 24 & 21 \\
5 & 12 & 21 & 16 \\
\end{array}
\]
Convolution

__global__ void convolution_1D_basic_kernel(float *N, float *M, float *P, int Mask_Width, int Width) {

 int i = blockIdx.x*blockDim.x + threadIdx.x;

 float Pvalue = 0;
 int N_start_point = i - (Mask_Width/2);
 for (int j = 0; j < Mask_Width; j++) {
 if (N_start_point + j >= 0 && N_start_point + j < Width) {
 Pvalue += N[N_start_point + j]*M[j];
 }
 }

 P[i] = Pvalue;
}

The 1D Version

• Thread organized as 1D grid.
• Pvalue allows intermediate values to be accumulated in registers to save DRAM bw.
• We assume ghost values are 0.
• There will be control flow divergence (due to ghost elements).
• Ratio of floating point arithmetic calculation to global memory access is ~ 1.0 → What can we do??
Regarding Mask M

- Size of M is typically small.
- The contents of M do not change during execution.
- All threads need to access M and in the same order.

Doesn’t this make M a good candidate for constant memory?"
Constant Memory

- Constant memory variables are visible to all thread blocks.
- Constant memory variables cannot be changed during kernel execution.
- The size of constant memory can vary from device to device.
Mask M and Constant Memory

• In host:
 • `#define MASK_WIDTH 10`
 • `__constant__ float M[MASK_WIDTH]`
 • Allocate and initialize a mask h_M
 • `cudaMemcpyToSymbol(M, h_M, MASK_WIDTH * sizeof(float), offset, kind);`

• Kernel functions
 – access constant memory variables as global variables \(\rightarrow\) no need to pass pointers of these variables to the kernel as parameter.
Question: Isn’t the constant memory also in DRAM? Why is it assumed faster than global memory?

Answer:

• CUDA runtime knows that constant memory variables are not modified.
• It directs the hardware to aggressively cache them during kernel execution.
Pattern: Reduction Tree
What is it?

• A commonly used strategy for processing large input data sets
 – There is no required order of processing elements in a data set
 – Partition the data set into smaller chunks
 – Have each thread to process a chunk
 – **Use a reduction tree to summarize the results from each chunk into the final answer**

• Google and Hadoop MapReduce frameworks are examples of this pattern
What is it?

• Summarize a set of input values into one value using a “reduction operation”
 – Max
 – Min
 – Sum
 – Product

• Often with user defined reduction operation function as long as the operation
 – Is associative and commutative
 – Has a well-defined identity value (e.g., 0 for sum)
An efficient sequential reduction algorithm performs N operations in $O(N)$

- Initialize the result as an identity value for the reduction operation
 - Smallest possible value for max reduction
 - Largest possible value for min reduction
 - 0 for sum reduction
 - 1 for product reduction
- Scan through the input and perform the reduction operation between the result value and the current input value
A parallel reduction tree algorithm performs $N-1$ Operations in $\log(N)$ steps.
Straightforward Implementation

• The original vector is in device global memory
• The shared memory is used to hold a partial sum vector
• Each step brings the partial sum vector closer to the sum
• The final sum will be in element 0
• Reduces global memory traffic due to partial sum values
First Step: Block Design

- Each thread block takes 2*BlockDim.x input elements
- Each thread loads 2 elements into shared memory

```c
__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;
unsigned int start = 2*blockIdx.x*blockDim.x;
partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start + blockDim.x+t];
```
Step 2: Reduction

for (unsigned int stride = 1; stride <= blockDim.x; stride *= 2)
{
 __syncthreads();
 if (t % stride == 0)
 partialSum[2*t]+= partialSum[2*t+stride];
}
A lot of branch divergence.
Better Reduction Step

for (unsigned int stride = blockDim.x; stride > 0; stride /= 2)
{
 __syncthreads();
 if (t < stride)
 partialSum[t] += partialSum[t+stride];
}

For a 1024 thread block

No divergence in the first 5 steps
1024, 512, 256, 128, 64, 32 consecutive threads are active in each step
All threads in each warp either all active or all inactive
The final 5 steps will still have divergence
Be Careful!

- Although the number of “operations” is N, each “operation involves much more complex address calculation and intermediate result manipulation.

- If the parallel code is executed on a single-thread hardware, it would be significantly slower than the code based on the original sequential algorithm.
Pattern: Prefix Sum (Scan)
Scan / Parallel Prefix Sum

Given an array \(A = [a_0, a_1, ..., a_{n-1}] \) and a binary associative operator @ with identity I:

\[
\text{scan (A)} = [I, a_0, (a_0 @ a_1), ..., (a_0 @ a_1 @ ... @ a_{n-2})]
\]

This is the exclusive scan.
Given an array \(A = [a_0, a_1, \ldots, a_{n-1}] \) and a binary associative operator \(@ \) with identity \(I \)

\[
\text{scan} \ (A) = [a_0, (a_0 @ a_1), \ldots, (a_0 @ a_1 @ \ldots @ a_{n-1})]
\]
Why?

• Scan is used as a building block for many parallel algorithms, especially those involving parallel working assignment and resource allocation
 – Radix sort
 – Quicksort
 – String comparison
 – Lexical analysis
 – Run-length encoding
 – Histograms
 – Etc.
A Inclusive Scan Application Example

• Assume that we have a 100-inch sausage to feed 10
• We know how much each person wants in inches
 – [3 5 2 7 28 4 3 0 8 1]
• How do we cut the sausage quickly?
• How much will be left

• Method 1: cut the sections sequentially: 3 inches first, 5 inches second, 2 inches third, etc.
• Method 2: calculate Prefix scan
 – [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)
Other Examples

• Assigning camp slots
• Assigning farmer market space
• Allocating memory to parallel threads
• Allocating memory buffer for communication channels
• ...

void scan(float* output, float* input, int length)
{
 output[0] = 0;
 for(int j = 1; j < length; ++j)
 {
 output[j] = input[j-1] + output[j-1];
 }
}

- N additions
- Use a guide:
 - Want parallel to be work efficient
 - Does similar amount of work
A Parallel Inclusive Scan Algorithm

![Array](attachment:image.png)

1. Read input from device memory to shared memory

Each thread reads one value from the input array in device memory into shared memory array.
A Parallel Scan Algorithm

1. (previous slide)
2. Iterate log(n) times: Threads stride to n: Add pairs of elements stride elements apart. Double stride at each iteration.

- Active threads: stride to n-1 (n-stride threads)
- Thread j adds elements j and j-stride from T0 and writes result into shared memory buffer T1 (ping-pong)
A Parallel Scan Algorithm

1. Read input from device memory to shared memory.

2. Iterate \(\log(n) \) times: Threads \(\text{stride} \) to \(n \): Add pairs of elements \(\text{stride} \) elements apart. Double \(\text{stride} \) at each iteration.

Iteration #2
Stride = 2
A Parallel Scan Algorithm

1. Read input from device memory to shared memory. Set first element to zero and shift others right by one.

2. Iterate \(\log(n) \) times: Threads \(\text{stride} \) to \(n \): Add pairs of elements \(\text{stride} \) elements apart. Double \(\text{stride} \) at each iteration.

3. Write output from shared memory to device memory.
How to handle dependencies in that implementation?

• During every iteration, each thread can overwrite the input of another thread

• **Barrier synchronization** to ensure all inputs have been properly generated

• Barrier synchronization is required to ensure that all threads have secured their inputs

• All threads perform addition and write output
Possible Implementation

```c
__global__ void work_inefficient_scan_kernel(float *X, float *Y, int InputSize) {
    __shared__ float XY[SECTION_SIZE];
    int i = blockIdx.x * blockDim.x + threadIdx.x;

    if (i < InputSize) {XY[threadIdx.x] = X[i];}

    // the code below performs iterative scan on XY
    for (unsigned int stride = 1; stride <= threadIdx.x; stride *= 2) {
        __syncthreads();
        float in1 = XY[threadIdx.x - stride];
        __syncthreads();
        XY[threadIdx.x] += in1;
    }
    __syncthreads();

    if (i < InputSize) {Y[i] = XY[threadIdx.x];}
}
```
Work Efficiency Considerations

• The first-attempt Scan executes \(\log(n) \) iterations

• This scan algorithm is not very work efficient
 – Sequential scan algorithm does \(n \) adds
 – A factor of \(\log(n) \) hurts: 20x for \(10^6 \) elements!

• A parallel algorithm can be slow when execution resources are saturated due to low work efficiency
Improving Efficiency

• A common parallel algorithm pattern: *Balanced Trees*
 – Build a balanced binary tree on the input data and sweep it to and from the root
 – Tree is not an actual data structure, but a concept to determine what each thread does at each step

• For scan:
 – Traverse down from leaves to root building partial sums at internal nodes in the tree
 • Root holds sum of all leaves
 – Traverse back up the tree building the scan from the partial sums
Parallel Scan - Reduction Step

\[x_0 \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7 \]

\[\sum x_0..x_1 \quad \sum x_2..x_3 \quad \sum x_4..x_5 \quad \sum x_6..x_7 \]

Time

In place calculation

Final value after reduce
Inclusive Post Scan Step

\[\sum_{x_0}^{x_1} \quad \sum_{x_2}^{x_3} \quad \sum_{x_4}^{x_5} \quad \sum_{x_6}^{x_7} \quad \sum_{x_0}^{x_5} \]
Inclusive Post Scan Step
Putting it Together
Work Analysis

- The parallel Scan executes $2 \times \log(n)$ parallel iterations
 - $\log(n)$ in reduction and $\log(n)$ in post scan
 - The iterations do $n/2$, $n/4$,...1, 1,, $n/4$. $n/2$ adds
 - Total adds: $2 \times (n-1) \rightarrow O(n)$ work

- The total number of adds is no more than twice of that done in the efficient sequential algorithm
 - The benefit of parallelism can easily overcome the 2X work when there is sufficient hardware
Error Handling in CUDA
What will happen when you compile and execute this piece of code?
Error Handling

• In a CUDA program, if we suspect an error has occurred during a kernel launch, then we must explicitly check for it after the kernel has executed.

• CUDA runtime will respond to questions ... But won’t talk without asked!
cudaError_t cudaGetLastError(void);

- Called by the host
- returns a value encoding the kind of the last error it has encountered
- check for the error only after we're sure a kernel has finished executing → don't forget kernel calls are async!
 - What will you do?
#include <stdio.h>
#include <stdlib.h>

__global__ void foo(int *ptr)
{
 *ptr = 7;
}

int main(void)
{
 foo<<<1,1>>>(0);

 // make the host block until the device is finished with foo
 cudaThreadSynchronize();

 // check for error
 cudaError_t error = cudaGetLastError();
 if (error != cudaSuccess)
 {
 // print the CUDA error message and exit
 printf("CUDA error: %s\n", cudaGetErrorString(error));
 exit(-1);
 }

 return 0;
}
cudaError_t error = cudaMalloc((void**)&ptr, 100000000000);

if(error != cudaSuccess)
{
 // print the CUDA error message and exit
 printf("CUDA error: %s\n", cudaGetErrorString(error));
 exit(-1);
}

The output will be:
CUDA error: out of memory
Rules of Thumb

• Do not use `cudaThreadSynchronize()` a lot in your code because it has a large performance penalty.
• You can enable it during debugging and disable it otherwise.

```c
#ifdef DEBUG
    cudaThreadSynchronize();
    cudaError_t error = cudaGetLastError();
    if(error != cudaSuccess)
    {
        printf("CUDA error at %s:%i: %s\n", filename, line_number, cudaGetErrorString(error));
        exit(-1);
    }
#endif
```

If debugging, compile with: `nvcc -DDEBUG mycode.cu`
Conclusions

• Performance is related to how you keep the GPU and its memory busy \(\Rightarrow\) does not necessarily mean higher occupancy.

• We looked at some of the common parallel patterns used in many GPU kernels. These are tools that you can use in your own kernels.