Whenever calculations are needed to solve a problem, those calculations must be submitted as part of the homework assignment.

Exercise 3.1. Given a twice-continuously differentiable function $f : \mathbb{R}^n \rightarrow \mathbb{R}$, assume that the point \bar{x} is not a stationary point of f. Show that any descent direction p at \bar{x} is the unique minimizer of a quadratic function whose Hessian is

$$B = I - \frac{1}{p^T p} pp^T - \frac{1}{\bar{g}^T p} \bar{g} \bar{g}^T,$$

where \bar{g} is the gradient of f at \bar{x}.

Exercise 3.2. Consider a quasi-Newton method in which the search direction p_k is defined by

$$p_k = -M_k g_k,$$

where g_k is the gradient of f at x_k and the symmetric matrix M_k represents a quasi-Newton approximation to the inverse Hessian of a nonlinear function $f(x)$. Assume that the updated matrix satisfies $M_{k+1} y_k = s_k$, where $y_k = g_{k+1} - g_k$ and $s_k = x_{k+1} - x_k$, and that M_{k+1} is updated using the DFP formula,

$$M_{k+1} = M_k - \frac{1}{y_k^T M_k y_k} M_k y_k y_k^T M_k + \frac{1}{s_k^T y_k} s_k s_k^T.$$

Show that M_{k+1} is singular if M_k is singular.

Exercise 3.3. Write code that implements a specialized BFGS quasi-Newton method for minimizing a quadratic with positive definite Hessian H, where $x_{k+1} = x_k + \alpha_k p_k$, with two options for computing the step α_k:

(i) Version 1: α_k is taken as the exact step to the minimizer along p_k, which is given for a quadratic by

$$\alpha_k = -\frac{g_k^T p_k}{p_k^T H p_k};$$

(ii) Version 2: α_k is chosen to satisfy the Armijo condition with $\eta_s = 0.001$, using a backtracking line search with $\gamma_c = \frac{1}{2}$, starting each line search with the unit step.

To keep things simple:
Perform the BFGS updates on a sequence of approximations \(\{B_k\} \) to the Hessian itself (not approximations to the inverse Hessian). If \(y_k^T s_k \leq 0 \), skip the update at iteration \(k \).

Solve \(B_k p_k = -g_k \) for \(p_k \) from scratch at each iteration. When \(y_k^T s_k > 0 \), generate \(B_{k+1} \) explicitly by adding the associated rank-two change to \(B_k \).

Start with \(B_0 = I \) and stop when \(\|g_k\| \) is less than \(\text{ftol} \) or else after \(\text{maxit} \) iterations. Print \(x^* \) and \(f(x^*) \). At each iteration, print \(k, x_k, f_k, \|g_k\|, \alpha_k, B_k \), and a message if the update was skipped.

Consider the four-variable quadratic function

\[
q(x) = c^T x + \frac{1}{2} x^T H x,
\]

with

\[
c = \begin{pmatrix} 2 \\ -1 \\ 2 \\ -1 \end{pmatrix} \quad \text{and} \quad H = \text{diag}(5, 1, 10^{-2}, 10^{-4}).
\]

(a) Use Version 1, with \(\text{ftol} = 1.0 \times 10^{-8} \) and \(\text{maxit} = 10 \), starting at \(x_0 = (-1, 0, 1, 1)^T \). How many iterations are executed before the program terminates? What is \(\|g_k\| \) at the last iteration? Does \(B_k \) converge to the exact Hessian?

(b) Use Version 1, with \(\text{ftol} = 1.0 \times 10^{-8} \) and \(\text{maxit} = 10 \), starting at \(x_0 = (-0.4, 0, 1, 1)^T \). How many iterations are executed before the program terminates? Does \(B_k \) converge to the exact Hessian? If not, please explain how this can happen, given Theorem 13.3 (in Notes 5).

(c) Use Version 2, with \(\text{ftol} = 1.0 \times 10^{-8} \) and \(\text{maxit} = 30 \), starting at \(x_0 = (-1, 0, 1, 1)^T \). How many iterations are executed before the program terminates? Please comment on (i) the values of \(\alpha_k \) and (ii) the rate of convergence of \(\{\|g_k\|\} \) to zero during the final few iterations. Does \(B_k \) seem to be converging to the exact Hessian?

(d) Use Version 2, with \(\text{ftol} = 1.0 \times 10^{-9} \) (i.e., \(\text{ftol} \) is smaller than in (c)) and \(\text{maxit} = 30 \), starting at \(x_0 = (-1, 0, 1, 1)^T \). How many iterations are executed before the program terminates? Please comment on (i) the values of \(\alpha_k \) during the final few iterations and (ii) the rate of convergence of \(\{\|g_k\|\} \) to zero during the final few iterations. Describe and explain any differences from the results of part (d).

Exercise 3.4. Let \(B \) be a symmetric positive-definite matrix, and let \(s \) be a nonzero \(n \)-vector. Prove that the matrix

\[
B_+ = B - \frac{1}{s^T B s} B s s^T B
\]

has \(n - 1 \) positive eigenvalues and one zero eigenvalue. Give a nonzero vector \(v \) for which \(B_+ v = 0 \).

Exercise 3.5. Consider the following local quadratic model of a twice-continuously differentiable objective function \(f(x) \) at the point \(x_k \):

\[
q_k(x) = f_k + g_k^T (x - x_k) + \frac{1}{2} (x - x_k)^T B_k (x - x_k),
\]

Let \(B \) be a symmetric positive-definite matrix, and let \(s \) be a nonzero \(n \)-vector. Prove that the matrix

\[
B_+ = B - \frac{1}{s^T B s} B s s^T B
\]

has \(n - 1 \) positive eigenvalues and one zero eigenvalue. Give a nonzero vector \(v \) for which \(B_+ v = 0 \).
where \(f_k = f(x_k), \) \(g_k = g(x_k), \) and \(B_k \) is a symmetric approximation to the exact Hessian \(H(x_k). \) When we move from \(x_k \) to the new point \(x_k + d, \) the change in the quadratic model is

\[
\Delta_k(d) = q_k(x_k + d) - q_k(x_k) = g_k^T d + \frac{1}{2} d^T B_k d.
\]

Assuming that \(d = \alpha p_k, \) where the search direction \(p_k \) satisfies \(B_k p_k = -g_k, \) show that \(\Delta_k(\alpha p_k) < 0 \) if \(B_k \) is positive definite and \(0 < \alpha < 2. \)

Exercise 3.6. When minimizing \(f(x) \) subject to the \(m \) equality constraints \(c(x) = 0, \) where \(m < n \) and \(c(x) = (c_1(x), c_2(x), \ldots, c_m(x))^T, \) let \(x^* \) be a feasible point, let \(J^* \) denote the \(m \times n \) Jacobian of \(c \) at \(x^*, \) and let \(Z^* \) denote a basis for the null space of \(J^*. \) The associated Lagrangian function is defined as \(L(x, \lambda) = f(x) - \lambda^T c(x), \) where \(\lambda \) is an \(m \)-vector of Lagrange multipliers. The Hessian of the Lagrangian function with respect to \(x \) is denoted by \(W(x, \lambda) = H(x) - \sum_{i=1}^m \lambda_i H_i(x), \) where \(H(x) = \nabla^2_{xx} f \) and \(H_i = \nabla^2_{xx} c_i. \)

Three background results are needed for this problem: the first-order KKT conditions (Definition 19.5 in Notes 7), the second-order necessary conditions (Theorem 19.7 in Notes 7), and the sufficient conditions (Theorem 19.8 in Notes 7).

Consider the following problem with two variables and a single nonlinear equality constraint:

\[
\begin{align*}
\text{minimize} \quad f(x) &= (x_1 - 1)^2 + x_2^2 \\
\text{subject to} \quad c(x) &= -x_1 + \frac{x_2^2}{\beta} = 0,
\end{align*}
\]

where \(\beta \) is a positive constant.

(a) In each of the two cases \(\beta = 1 \) and \(\beta = 4, \) explain whether or not \(\bar{x} = (0, 0)^T \) satisfies the (a) first-order KKT conditions, (b) second-order necessary conditions, and (c) sufficient conditions for optimality.

(b) Find the smallest positive value \(\bar{\beta} \) such that for all \(\beta > \bar{\beta}, \) the point \(\bar{x} = (0, 0)^T \) satisfies the sufficient conditions for a strict local solution of (3.1).

Exercise 3.7. Assume that \(\rho_k \) and \(\rho_{k+1} \) are positive penalty parameters such that \(\rho_{k+1} > \rho_k > 0. \) Consider the quadratic penalty function

\[
P_Q(x, \rho_k) = f(x) + \frac{1}{2} \rho_k c(x)^T c(x),
\]

where \(f(x) \) and \(c_i(x), i = 1, 2, \ldots, m, \) are smooth nonlinear functions. Assume that \(P_Q(x, \rho_k) \) and \(P_Q(x, \rho_{k+1}) \) have unique unconstrained minimizers \(x_k \) and \(x_{k+1} \) respectively. Show that

(a) \(f(x_{k+1}) \geq f(x_k); \) and

(b) \(||c(x_{k+1})||^2 \leq ||c(x_k)||^2. \)

Exercise 3.8. This problem involves trying (simplified versions of!) two approaches for solving a 2-variable nonlinear equality-constrained optimization problem of minimizing \(f(x) \) subject to \(c(x) = 0, \) where \(c \) is a scalar-valued function.

Approach 1 involves using a pure Newton method to perform unconstrained minimization of the quadratic penalty function \(P_Q(x, \rho) = f(x) + \frac{1}{2} \rho \|c(x)\|^2, \) so that the \(k \)th search direction \(p_k \) for a given value of \(\rho \) satisfies the Newton equations

\[
\nabla^2 P_Q(x_k, \rho) p_k = -\nabla P_Q(x_k, \rho).
\]
At $x^*(\rho)$, an unconstrained minimizer of $P_Q(x, \rho)$, the vector $\lambda(\rho) = -\rho c(x^*(\rho))$ is an estimate of the Lagrange multiplier vector for the original problem (if Lagrange multipliers exist).

Approach 2, sometimes called the Newton-Lagrange method, is applicable when the problem satisfies a constraint qualification (so that Lagrange multipliers exist). The strategy is to use Newton’s method for multidimensional zero-finding to find (x, λ) such that the $(n + m)$-dimensional nonlinear function $F(x, \lambda)$, the gradient of the Lagrangian function with respect to x and λ, is equal to zero:

$$F(x, \lambda) \triangleq \begin{pmatrix} g(x) - J(x)^T \lambda \\ c(x) \end{pmatrix}.$$

The associated Newton equations are

$$\begin{pmatrix} W(x_k, \lambda_k) & -J(x_k)^T \\ J(x_k) & 0 \end{pmatrix} \begin{pmatrix} p_k \\ \delta_k \end{pmatrix} = -F(x_k, \lambda_k),$$

where $W(x_k, \lambda_k)$ is the Hessian of the Lagrangian function at (x_k, λ_k), p_k is the step in x, and δ_k is the step in λ. Note that there is no penalty parameter, but that the Lagrange multiplier is treated as an independent variable.

In this exercise, you are asked to apply Approach 1 for four values of the penalty parameter ($\rho = 1, 10, 100, 1000$), starting at a specified point x_0 for the smallest ρ. After optimizing the penalty function for the first penalty parameter, the Newton iterations to minimize the penalty function for the next value of ρ should begin at the last iterate x for the previous ρ, as in classical penalty function methods. Your program should terminate the Newton iterations for each value of ρ after maxit iterations or when $\|\nabla P_Q\|$ is less than ftol.

If you use the starting points given below, a pure Newton method should work well in both Approaches 1 and 2 (i.e., the step α can safely be taken as 1). Hence you may wish to adapt programs used in earlier homework.

The problem functions are

$$f(x) = x_1^3 - x_1 x_2 \quad \text{and} \quad c(x) = \frac{5}{2} x_1^2 + \frac{1}{4} x_2^2 - \frac{7}{2} = 0.$$ \hspace{1cm} (3.2)$$

The contours of f are shown in the figure, along with the blue boundary of the ellipse where the constraint is satisfied.

(a) Verify numerically that $x^* = (-1, -2)^T$ satisfies the sufficient optimality conditions for problem (3.2). What is the optimal Lagrange multiplier λ^* and how did you obtain it?

(b) Show that $\bar{x} = (1, -2)^T$ is a first-order KKT point for this problem. Explain how you know that \bar{x} is not optimal.

(c) Apply Approach 1 with maxit = 15 and ftol = 1.0e-05. Take the initial point as $x_0 = (-1.2, -1.9)^T$ for $\rho = 1$. At the kth iteration of Newton’s method for each value of ρ, print k, x, f, c, and $\|\nabla P_Q\|$, using scientific notation for the latter values and showing at least 6 significant digits. For each value of ρ, after your Newton iterations have terminated, print $\|x^*(\rho) - x^*\|$ and $\|\lambda(\rho) - \lambda^*\|$. Comment on how these differences seem to be related to the value of ρ.
(d) Letting $\text{maxit} = 8$ and $\text{ftol} = 1.0\text{e-05}$, apply Approach 2, with $x_0 = (-1.2, -1.9)^T$ and $\lambda_0 = 0$. Comment on the behavior of the iterates. Do they appear to be converging quadratically to (x^*, λ^*)? Explain.

(e) Letting $\text{maxit} = 12$ and $\text{ftol} = 1.0\text{e-05}$, repeat (c) with $x_0 = (1.2, -1.8)^T$. How do the results differ from those of (c)?

(f) Letting $\text{maxit} = 8$ and $\text{ftol} = 1.0\text{e-05}$, repeat (d) with $x_0 = (1.2, -1.8)^T$ and $\lambda_0 = 0$. How do the results differ from those of (d)? Explain the behavior of the Newton-Lagrange method by considering the figure.

Exercise 3.9. Augmented Lagrangian methods rely on the fact that there is a finite penalty parameter $\bar{\rho}$ such that the Hessian of the augmented Lagrangian,

$$\nabla^2 L_A(x, \lambda, \rho) = H(x) - \sum_{i=1}^{m} \lambda_i H_i(x) + \rho J(x)^T J(x),$$

is positive definite for $\rho > \bar{\rho}$.

Consider the eigenvalues of the Hessian of the augmented Lagrangian function for the objective function and constraint of (3.2), evaluated at the optimal x and λ. Show by computation that, when $\rho = 0$, then $\nabla^2 L_A(x^*, \lambda^*, \rho)$ is not positive definite. Find a value of ρ for which $\nabla^2 L_A(x^*, \lambda^*, \rho)$ is positive definite. If you wish (i.e., this is interesting but optional), use a 1-d zero-finding method (suggestion: bisection) to find $\bar{\rho}$ such that $\nabla^2 L_A(x^*, \lambda^*, \bar{\rho})$ is positive semidefinite and singular.