Lecture 1: Evaluation

Fernando Diaz
Microsoft Research NYC

September 19, 2016
Outline

Introduction to Evaluation

Batch Evaluation

Production Evaluation
Introduction to Evaluation
Information Retrieval

given a \textbf{query} and a \textbf{corpus}, find \textbf{relevant documents}.

- \textbf{query}: user’s expression of the information need
- \textbf{corpus}: the repository of retrievable items
- \textbf{relevance}: satisfaction of the information need
Evaluation

- Fundamental issue in information retrieval
 - we can spend days discussing algorithms but we need to quantify if they are good.
 - given a task is system A better than system B?
- Many methods of information retrieval evaluation
 - User study
 - Batch study
 - Production test
- Each evaluation experiment has benefits and usually we conduct many types of evaluations before making a claim about a system.
Always compare system performance to a strong baseline.
User Study

- **Method**: Provide a small group of users with several retrieval systems and ask them to complete several search tasks; interview users afterward to learn about system performance.

- **Advantages**
 - Very detailed data about users’ reaction to the systems.
 - Can leverage experimental methodology from psychology.

- **Drawbacks**
 - Costly to run user studies (pay users, scientist time, data coding).
 - Difficult to generalize from small studies to broad populations.
 - Laboratory experiments are often not representative of the normal user context.
 - Need to rerun an experiment when a new system is considered.
Batch study

- **Method**: Gather a small pool of ‘test queries’ and judge the relevance of documents in the corpus; compare systems on their ability to rank relevant documents above non-relevant documents.

- **Advantages**
 - Allows repeatable experiments; we can compare systems on the same queries and judgments.
 - Can construct data sets large enough to conduct significance tests on performance metrics.

- **Drawbacks**
 - Costly to get judgments (pay editors).
 - Judgments gathered in synthetic environment, often not by the users generating the queries.
 - Assumes relevance is the same across users.

- Batch studies underly the majority of information retrieval evaluation (core evaluation in much of TREC).
Production test

• **Method**: In a production system, have x% of the traffic use system A and y% use system B; compare system effects on logged user interaction.

• **Advantages**
 • System usage is naturalistic; users are not situated in a lab and often are not aware that a test is being conducted.
 • Can construct very large data sets.

• **Drawbacks**
 • Requires a very good understanding of interpreting positive and negative user experience from logging data (do we want to just measure user retention? clicks?)
 • Experiments are very difficult to repeat.

• Increasingly, this is how real world systems are evaluated; ‘user studies on steroids’.
Batch Evaluation
Batch Data Gathering Procedure

1. Generate a set of queries on which you want to test system performance.
2. Gather a set of documents of each query for which you want to judge relevance.
3. Judge the relevance of each document to the query.
Batch Data Gathering Procedure

Example

1. \{facebook, yahoo, google, bing\}
2. \{{facebook.com,cnn.com/facebook-news.html,...},{cnn.com/yahoo-news.html,yahoo.com,...},...\}
3. \{{R,N,...},{N,R,...},...\}
Batch Data Gathering Procedure

Queries

- Sources of queries
 - System experimenter hand-crafting a small pool.
 - User study.
 - Gather from a production query log.
- We must be very careful about the queries we select because they represent the queries upon which we want to system to perform well.
 - What’s implication of the queries sampled in the previous example?
- Usually we sample queries according to how often we expect to find them in the query traffic for our system.
Batch Data Gathering Procedure

Documents

- Source of documents: the corpus
- Problem: we cannot judge the relevance of every document in the corpus.

Solutions

- judge a random sample of documents from the corpus.
- what is the problem if queries are highly specialized?
- only evaluate the top documents from the retrievals you are evaluating (pooling).
- what does this imply about reproducibility?
- manually try to find all relevant documents for a topic.

- Unjudged documents are often considered to be non-relevant since the majority of the collection is non-relevant.
Batch Data Gathering Procedure

Judging Relevance

• Relevance
 • Construct a clear and complete definition of what makes a document relevant to a query; it’s too late to change after judging has already started!
 • Relevance can be defined according to the task: is the document relevant if it mentions the topic? is it relevant if it only mentions the topic? Will the user only be satisfied by a single document?
 • Relevance can binary (relevant vs non-relevant) or graded (degree of relevance).

• Editors
 • Train the editors (often require a few queries to get familiar with the relevance guidelines).
 • Decide number of editors per query (more editors risks misinterpretation of the query).
$D = \{(q, r)\}$

q judged query

r map from documents to judgments
Batch Data Evaluation Procedure

Evaluate-System\((f, \mathcal{D})\)

1. \(\mathcal{E} \leftarrow \{\}\)
2. for \((q, r) \in \mathcal{D}\) do
 3. \(\pi \leftarrow \text{Rank}(f, \text{Keys}(r))\)
 4. \(e \leftarrow \text{Evaluate-Ranking}(\pi, r)\)
 5. \(\mathcal{E} \leftarrow \mathcal{E} \cup \{e\}\)
3. return \(\text{Aggregate-Metric}(\mathcal{E})\)
Defining Evaluate-Ranking

- Much of the work in information retrieval evaluation has focused on defining appropriate evaluation metrics for rankings.
- A metric is evaluated by its correlation with user objectives (e.g. success, satisfaction, happiness).
Dog Food - Natural Dog Food and Organic Dog Food Available Online from Petco.com. Take advantage of the lowest prices on natural cat food and organic cat food.

Cat Food 101: What You Need to Know About Feeding Your Cat
Here's an introduction to cat food, where we answer frequently asked questions from cat owners about cat food and feeding.

CANIDAE® All Natural Holistic Dog Food - All Life Stages dry formula
www.canidae.com/dogs/all_life_stages/dry.html
All Natural Dog Food Formula made with 4 Meat Meals. Dogs Love the Taste. Whole Grain Brown Rice and Diversified Carbohydrates Provide More Wholesome...

Evermore Pet Food • Evermore
www.evermorepetfood.com/
Our gently cooked, nutritionally balanced formulas are carefully sourced using minimally processed, whole-food ingredients to improve upon the time-honored...

Buy Iams Cat Food | Iams
www.iams.com/cat-food/
Find online and local retailers who carry the Iams dog food you’re looking for.

Cat Food 101: What You Need to Know About Feeding Your Cat
pets.webmd.com/cats/cat-food-101-what-you-need-to-know-about...
Here’s an introduction to cat food, where we answer frequently asked questions from cat owners about cat food and feeding.

Dog Food - Natural Dog Food and Organic Dog Food Available Online from Petco.com. Take advantage of the lowest prices on natural cat food and organic cat food.

Buy Iams Cat Food | Iams
www.iams.com/cat-food/
Find online and local retailers who carry the Iams dog food you’re looking for.
Defining Evaluate-Ranking
Kendall’s τ

- Statistical measure of the correlation between two rankings developed in 1938.
- Infer an optimal ranking from the relevance judgments.
- Compare the system’s ranking to the optimal ranking.
- Comparison looks at the number of swapped pairs of items.
Defining Evaluate-Ranking

Kendall’s τ

Evaluate-System-Kendall(π, r)

1 $C \leftarrow 0$
2 $D \leftarrow 0$
3 $\rho^* \leftarrow $ Sort(r)
4 for $(i, j) \in $ Document-Pairs(π)
5 do
6 \hspace{1em} if $(\pi^{-1}(i) > \pi^{-1}(j)) \land (\rho^{-1}(i) > \rho^{-1}(j))$
7 \hspace{2em} then
8 \hspace{3em} $C \leftarrow C + 1$
9 \hspace{3em} else
10 \hspace{2em} $D \leftarrow D + 1$
11 return $\frac{C-D}{C+D}$
(a) ρ^*
(a) ρ^* \hspace{1cm} (b) $\tau = 0.64$
(a) ρ^* \quad (b) $\tau = 0.64$ \quad (c) $\tau = 0.47$
(a) ρ^*
(b) $\tau = 0.64$
(c) $\tau = 0.47$
(d) $\tau = -0.07$
Defining Evaluate-Ranking
Kendall’s τ

- Kendall’s τ provides a nice formalism for evaluation but its user model is somewhat abstract.
- Do users really care about swaps at the bottom of the ranked list?
- What about ties?
Defining Evaluate-Ranking

Precision

- Precision measures the amount of relevant content in the ranking provided by the system.
- In set-based retrieval, we can count the number of relevant documents in the retrieved set.
- In rank-based retrieval, we can count the number of relevant documents in the top of the ranked list.
Defining Evaluate-Ranking

Precision at k documents

Evaluate-System-Precision@K(π, r, K)

1. $RR \leftarrow 0$
2. for $0 < i < K$
3. do
4. if $r(\pi(i))$
5. then
6. $RR \leftarrow RR + 1$
7. return $\frac{RR}{K}$
P@1

(a) P@1 = ?
(b) P@1 = ?
(c) P@1 = ?
(d) P@1 = ?
(a) $P@1 = 1.0$

(b) $P@1 = 1.0$

(c) $P@1 = 0.0$

(d) $P@1 = 0.0$
(a) $P@4 =$?
(b) $P@4 =$?
(c) $P@4 =$?
(d) $P@4 =$?
(a) $P@4 = 1.0$
(b) $P@4 = 0.5$
(c) $P@4 = 0.5$
(d) $P@4 = 0.0$
(a) $P@10 = 0.40$ (b) $P@10 = 0.40$ (c) $P@10 = 0.40$ (d) $P@10 = 0.40$
Defining Evaluate-Ranking

Precision

• What happens to precision as we increase K?

• Precision is good if the user only cares about retrieving a few relevant documents.

• In some cases, users are interested in retrieving all relevant documents (e.g. researching for a paper, legal search, medical informatics).
Defining Evaluate-Ranking

Recall

- Recall measures the coverage of relevant content in the ranking provided by the system.
- In set-based retrieval, we can count the fraction of relevant documents which have been retrieved.
- In rank-based retrieval, we can count the fraction of relevant documents which have been retrieved in the top of the ranked list.
Defining Evaluate-Ranking

Recall at k documents

Evaluate-System-Recall@K(π, r, K)

1. $RR \leftarrow 0$
2. $R \leftarrow \text{Count-Relevant}(r)$
3. for $0 < i < K$
4. do
5. if $r(\pi(i))$
6. then
7. $RR \leftarrow RR + 1$
8. return $\frac{RR}{R}$
(a) $R@1 = ?$
(b) $R@1 = ?$
(c) $R@1 = ?$
(d) $R@1 = ?$
(a) $R@1 = 0.25$
(b) $R@1 = 0.25$
(c) $R@1 = 0.00$
(d) $R@1 = 0.00$
(a) $R@4 = 1.0$
(b) $R@4 = 0.5$
(c) $R@4 = 0.5$
(d) $R@4 = 0.0$
(a) $R@10 = 1.0$

(b) $R@10 = 1.0$

(c) $R@10 = 1.0$

(d) $R@10 = 1.0$
Defining Evaluate-Ranking

Recall

- What happens to recall as we increase K?
- Recall is good if the user only cares about retrieving all relevant documents.
Defining Evaluate-Ranking

F-Measure

• Oftentimes users want a ranking with high precision and high recall.
• We can compute the harmonic mean of precision and recall.
• The weighted harmonic mean of precision and recall is the F-Measure.
Defining Evaluate-Ranking

F-Measure at \(k \) documents

Evaluate-System-F@K(\(\pi, r, K, \alpha \))

1. \(P \leftarrow \text{Evaluate-System-Precision@K}(\pi, r, K) \)
2. \(R \leftarrow \text{Evaluate-System-Recall@K}(\pi, r, K) \)

3. \text{return} \((\alpha \left(\frac{1}{P} \right) + (1 - \alpha) \left(\frac{1}{R} \right))^{-1} \)
$F_{0.50}$
$F_{0.90}$
$F_{0.10}$
Defining Evaluate-Ranking

F-Measure

- How does the metric behave as we increase α?
- The F-Measure is a good summary number for a retrieval to present.
- However, it conflates information about precision and recall.
The problem with metrics measured at K documents is that we must pick K. Sometimes this makes sense given a task/user model. If we expect a diversity of search lengths, then we should inspect several values of K.
Defining Evaluate-Ranking
Precision-Recall Graph

Evaluate-System-PrecisionRecallGraph(π, r)

1. for $0 < i < \text{Length}(\pi)$
2. do
3. $P \leftarrow \text{Evaluate-System-Precision@K}(\pi, r, i)$
4. $R \leftarrow \text{Evaluate-System-Recall@K}(\pi, r, i)$
5. $PR \leftarrow PR \cup \{(P, R)\}$
6. return Plot(PR)
Defining Evaluate-Ranking

Precision-Recall Graph

\[
\begin{array}{c}
R \\
R
\end{array}
\]

\[
\begin{array}{c}
P \\
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
\end{array}
\]
Defining Evaluate-Ranking

Average Precision

- Another solution to dealing with selecting K is to measure precision along different points of the ranked list and then aggregate.
- One method is to compute precision at each relevant document.
Defining Evaluate-Ranking

Average Precision

Evaluate-System-AveragePrecision(\(\pi, r\))

1. \(AP \leftarrow 0\)
2. \(RR \leftarrow 0\)
3. for \(0 < i < \text{Length}(\pi)\) do
 4. if \(r(\pi(i))\) then
 5. \(RR \leftarrow RR + 1\)
 6. \(AP \leftarrow AP + \frac{RR}{i}\)
10. return \(\frac{AP}{RR}\)
Average Precision

1.0 1.0 0.5 0.4
Average Precision

(a) AP = 1.00 (b) AP = 0.74 (c) AP = 0.39 (d) AP = 0.28
Defining Evaluate-Ranking

Average Precision

- If we expect increasingly more non-relevant documents deeper in the ranking, this will have the effect of weighting the top of the ranked list more.
- Average precision is closely related to the area under the precision recall curve.
- Can we be more explicit about the position weighting?
Defining Evaluate-Ranking

Reciprocal Rank

• If the user will be satisfied after one relevant document, we can evaluate according to the position of the first relevant document.
• We want to aggressively penalize the system if the first relevant document is deep in the ranking.
Defining Evaluate-Ranking
Reciprocal Rank

Evaluate-System-ReciprocalRank(\(\pi, r\))

1. for \(0 < i < \text{Length}(\pi)\)
2. do
3. if \(r(\pi(i))\)
4. then
5. return \(\frac{1}{i}\)
6. return 0
Reciprocal Rank

(a) RR = 1.00
(b) RR = 1.00
(c) RR = 0.33
(d) RR = 0.14
Defining Evaluate-Ranking

Reciprocal Rank

- Reciprocal rank is nice because it models the importance of the top of the ranked list to the user.
- However, the assumption of satisfaction after one relevant document is brittle.
 - What if the judgments are graded?
 - What if the user would like more than one relevant document?
Defining Evaluate-Ranking
Discounted Cumulative Gain

- In order to deal with graded relevance and position bias, we can explicitly model relevance and degradation of performance.

<table>
<thead>
<tr>
<th>grade</th>
<th>gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect</td>
<td>10</td>
</tr>
<tr>
<td>Excellent</td>
<td>7</td>
</tr>
<tr>
<td>Good</td>
<td>5</td>
</tr>
<tr>
<td>Fair</td>
<td>1</td>
</tr>
<tr>
<td>Bad</td>
<td>0</td>
</tr>
</tbody>
</table>
Defining Evaluate-Ranking
Discounted Cumulative Gain

Evaluate-System-DCG(\(\pi, r, K\))

1. \(DCG \leftarrow 0\)
2. \(\text{for } 0 < i < K\)
3. \(\text{do}\)
4. \(DCG \leftarrow DCG + \frac{\text{Gain}(r(\pi(i)))}{\log_2(i+1)}\)
5. \(\text{return } DCG\)
Discounted Cumulative Gain

(a) DCG = 1.00
(b) DCG = 0.89
(c) DCG = 0.59
(d) DCG = 0.48
Defining Evaluate-Ranking

Discounted Cumulative Gain

- Satisfies a clear user browsing model and incorporation of graded judgments.
- How to derive accurate discounting and grade values is an open area of research.
Summary

<table>
<thead>
<tr>
<th>τ</th>
<th>P@3</th>
<th>R@3</th>
<th>F$_{0.50}$</th>
<th>AP</th>
<th>RR</th>
<th>NDCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>0.75</td>
<td>0.88</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.64</td>
<td>0.66</td>
<td>0.50</td>
<td>0.57</td>
<td>0.74</td>
<td>1.00</td>
<td>0.89</td>
</tr>
<tr>
<td>0.47</td>
<td>0.33</td>
<td>0.25</td>
<td>0.29</td>
<td>0.39</td>
<td>0.33</td>
<td>0.59</td>
</tr>
<tr>
<td>-0.07</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.28</td>
<td>0.14</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Batch Data Evaluation Procedure

Evaluate-System\((f, D)\)

1. \(\mathcal{E} \leftarrow \{\}\)
2. for \((q, r) \in D\) do
3. \(\pi \leftarrow \text{Rank}(f, \text{Keys}(r))\)
4. \(e \leftarrow \text{Evaluate-Ranking}(\pi, r)\)
5. \(\mathcal{E} \leftarrow \mathcal{E} \cup \{e\}\)
6. return Aggregate-Metric(\(\mathcal{E}\))
Defining Aggregate-Metric

- Given a measure of performance across queries, how do we aggregate the metric?
- The choice of aggregation reflects our desire system robustness.

 \[
 \max(\mathcal{E}) \quad \text{very risky; performance may be poor for other queries.}
 \]

 \[
 \min(\mathcal{E}) \quad \text{very conservative; poor performance may be an anomaly.}
 \]

 \[
 \frac{1}{|\mathcal{E}|} \sum_{e \in \mathcal{E}} e \quad \text{arithmetic mean; incorporates performance on all queries.}
 \]

 \[
 \prod_{e \in \mathcal{E}} e^{\frac{1}{|\mathcal{E}|}} \quad \text{geometric mean; prefers strong performance on all queries.}
 \]
Defining Aggregate-Metric
Averaging Precision-Recall Graphs

- Empirical fact that as recall increases, precision decreases on average.
- Therefore, we first convert query-level precision-recall curves into monotonically decreasing step functions.
- We then interpolate precision of these functions at fixed recall points (usually \(\{0, .1, \ldots, .9, 1\}\))
Defining Evaluate-Ranking
Averaging Precision-Recall Graphs
Evaluation When Data Is Needed For Parameter Tuning

- When data is required to tune system parameters, we must not tune parameters on the evaluation set.
 - This is almost always the case with machine learned ranking models.
 - Hurts generalizability since we may be tuning parameters for the evaluation set.
- In order to address this, we split the data set into a training set (for setting system parameters) and a testing set (for evaluating system performance).
- In practice, we use cross-validation to reduce the variance of performance estimates.
Evaluation When Data Is Needed For Parameter Tuning

Cross-Validation

Cross-Validated-Evaluation(\mathcal{D}; K)

\begin{algorithmic}[1]
\State $\mathcal{F} \leftarrow \text{Random-Partition}(\mathcal{D}$; K)
\State $\mathcal{E} \leftarrow \{\}$
\For {$\mathcal{D}' \in \mathcal{F}$}
\Do
\State $f \leftarrow \text{Train-Parameters} (\mathcal{D}$ $-$ $\mathcal{D}')$
\State $e \leftarrow \text{Evaluate-System} (f$, $\mathcal{D}')$
\State $\mathcal{E} \leftarrow \mathcal{E} \cup \{e\}$
\EndDo
\EndFor
\State \textbf{return} $\text{Aggregate-Metric}(\mathcal{E})$
\end{algorithmic}
Comparing Systems

- We usually care more about the relative performance of systems, not just the absolute value of the metric.
- We *must* compare system performance on *exactly* the same data set \mathcal{D}.
- Comparing raw aggregated metrics is subject to statistical noise.
- Because we would like to be scientific about our conclusions, we require significance testing.
Comparing Systems

- In order to test the significance of a difference in performance, we use paired statistical tests,
 - t-test
 - Wilcoxon signed rank test
 - bootstrap
- Pairing is performed on evaluation queries.
- Any evaluation in this course must execute statistical testing of differences and report p-values.
- The R software package contains all of the routines you need to perform these tests (http://www.R-project.org).
Is the difference significant?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>query 1</td>
<td>.1</td>
<td>.0</td>
<td>.1</td>
</tr>
<tr>
<td>query 2</td>
<td>.7</td>
<td>.9</td>
<td>.8</td>
</tr>
<tr>
<td>query 3</td>
<td>.3</td>
<td>.2</td>
<td>.3</td>
</tr>
<tr>
<td>query 4</td>
<td>.4</td>
<td>.2</td>
<td>.4</td>
</tr>
<tr>
<td>query 5</td>
<td>.9</td>
<td>.3</td>
<td>.9</td>
</tr>
<tr>
<td>query 6</td>
<td>.4</td>
<td>.1</td>
<td>.4</td>
</tr>
<tr>
<td>query 7</td>
<td>.5</td>
<td>.6</td>
<td>.5</td>
</tr>
<tr>
<td>query 8</td>
<td>.9</td>
<td>.1</td>
<td>.9</td>
</tr>
<tr>
<td>query 9</td>
<td>.5</td>
<td>.1</td>
<td>.5</td>
</tr>
<tr>
<td>query 10</td>
<td>.3</td>
<td>.4</td>
<td>.3</td>
</tr>
<tr>
<td>average</td>
<td>0.50</td>
<td>0.29</td>
<td>0.51</td>
</tr>
</tbody>
</table>
Is the difference significant? using R

```r
> a=c(.1,.7,.3,.4,.9,.4,.5,.9,.5,.3)
> b=c(0,.9,.2,.2,.3,.1,.6,.1,.1,.4)
> wilcox.test(a,b,"greater")

Wilcoxon rank sum test with continuity correction

data:  a and b
W = 74.5, p-value = 0.03356
alternative hypothesis: true location shift is greater than 0
```
Is the difference significant? using R

> a=c(.1,.7,.3,.4,.9,.4,.5,.9,.5,.3)
> c=c(.1,.8,.3,.4,.9,.4,.5,.9,.5,.3)
> wilcox.test(c,a,"greater")

Wilcoxon rank sum test with continuity correction

data: c and a
W = 50.5, p-value = 0.5
alternative hypothesis: true location shift is greater than 0
Is the difference significant? using R

> t.test(a,b,"greater")

Welch Two Sample t-test

data: a and b
t = 1.7413, df = 17.95, p-value = 0.04937
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
 0.0008398375 Inf
sample estimates:
mean of x mean of y
 0.50 0.29
Is the difference significant?

using R

> t.test(c,a,"greater")

Welch Two Sample t-test

data: c and a
t = 0.0836, df = 17.974, p-value = 0.4672
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
 -0.1975412 Inf
sample estimates:
mean of x mean of y
 0.51 0.50
Comparing Systems

- In general, improvements are considered significant if \(p < 0.05 \).
- Computing the significance is easy.
- Finding significant results is difficult.
Summary

- Batch evaluation is the principle way of testing systems without negatively impacting users.
- Still used as an offline method for studying effectiveness.
- Concepts underlie some production evaluation metrics.
Production Evaluation
Production Data Gathering Methods

- Production web search engines can—and should—log as much information as possible which is related to system performance (subject to privacy terms of service).
- Simplest/strongest source of information is *click logging*.
 - indicates user interest in a search result.
 - can be logged with easy architecture.
Click Logging with a Redirect Server

Dog Food - Natural Dog Food and Organic Dog Food Available Online from Petco.com.

Take advantage of the lowest prices on natural cat food and organic cat food from Petco.com.

Cat Food 101: What You Need to Know About Feeding Your Cat

Here's an introduction to cat food, where we answer frequently asked questions from cat owners about cat food and feeding.

CANIDAE® All Natural Holistic Dog Food - All Life Stages dry formula

www.canidae.com/dogs/all_life_stages/dry.html

All Natural Dog Food Formula made with 4 Meat Meals. Dogs Love the Taste. Whole Grain Brown Rice and Diversified Carbohydrates Provide More Wholesome...

Evermore Pet Food • Evermore

evermorepetfood.com/

Our gently cooked, nutritionally balanced formulas are carefully sourced using minimally processed, whole-food ingredients to improve upon the time-honored...

Buy Iams Cat Food | Iams

Find online and local retailers who carry the Iams dog food you're looking for.

<ruby>81</ruby> / <ruby>105</ruby>
Click Logging with a Redirect Server

Dog Food - Natural Dog Food and Organic Dog Food Available Online from Petco.com. Take advantage of the lowest prices on natural cat food and organic cat food.

www.canidae.com/dogs/all_life_stages/dry.html
All Natural Dog Food Formula made with 4 Meat Meals. Dogs Love the Taste. Whole Grain Brown Rice and Diversified Carbohydrates Provide More Wholesome...

http://redirect.searchengine.com
click log

http://pets.webmd.com
Cat Food 101: What You Need to Know About Feeding Your Cat
Here's an introduction to cat food, where we answer frequently asked questions from cat owners about cat food and feeding.

evermorepetfood.com/
Our gently cooked, nutritionally balanced formulas are carefully selected using minimally processed, whole-food ingredients to improve upon the time-honored...

Buy Iams Cat Food | Iams
Find online and local retailers who carry the Iams cat food you're looking for.

http://pets.webmd.com
Click Logging with a Beacon Server
Click Logging with a Beacon Server

Dog Food - Natural Dog Food and Organic Dog Food Available Online from Petco.com. Take advantage of the lowest prices on natural cat food and organic cat food.

Cat Food 101: What You Need to Know About Feeding Your Cat pets.webmd.com/cats/cat-food-101-what-you-need-to-know-about... Here's an introduction to cat food, where we answer frequently asked questions from cat owners about cat food and feeding.

CANIDAE® All Natural Holistic Dog Food - All Life Stages dry formula www.canidae.com/dogs/all_life_stages/dry.html All Natural Dog Food Formula made with 4 Meat Meals. Dogs Love the Taste. Whole Grain Brown Rice and Diversified Carbohydrates Provide More Wholesome...

Evermore Pet Food • Evermore evermorepetfood.com/ Our gently cooked, nutritionally balanced formulas are carefully sourced using minimally processed, whole-food ingredients to improve upon the time-honored...

Buy Iams Cat Food | Iams www.iams.com/cat-food/ Find online and local retailers who carry the Iams cat food you're looking for.

beacon.searchengine.com

http://pets.webmd.com
Click as Relevance

Hypothesis: observing a click on d for query q implies that d is relevant to q.

- allows reuse of batch evaluation metrics.
- a lot of evidence supporting this hypothesis.
- correlation is not perfect.
Click as Relevance

\[C = \{ \langle q_0, d_0, 1 \rangle, \langle q_0, d_1, 0 \rangle, \langle q_0, d_2, 1 \rangle, \ldots, \langle q_0, d_0, 0 \rangle, \langle q_0, d_1, 1 \rangle, \langle q_0, d_2, 1 \rangle, \ldots, \langle q_1, d_0, 1 \rangle, \langle q_1, d_1, 0 \rangle, \langle q_1, d_2, 0 \rangle, \ldots \} \]

\[C^* = \{ \langle q_0, d_0, .90 \rangle, \langle q_0, d_1, .75 \rangle, \langle q_0, d_2, .50 \rangle, \ldots, \langle q_1, d_0, .99 \rangle, \langle q_1, d_1, .40 \rangle, \langle q_1, d_2, .10 \rangle, \ldots \} \]
Click as Relevance

Clicks are Noisy

- **accidental clicking**: need to detect and remove clicks which immediately return to the search results page.
- **malicious clicking**: need to detect and remove clicks from robots trying to manipulate the system.
- **position bias**: need to account for documents at higher positions being clicked first.
- **presentation bias**: need to account for documents or results that are visually more attractive.
- **ambiguous intent**: need to account for clicks representing different query intents.
Click as Relevance
Dealing with Position Bias

- User scan behavior starts from the top of the ranked list and moves serially downward.
- Documents at the top tend to receive more examinations and clicks.
- Instead of modeling the ‘click’ or ‘no click’, we can model clicks conditioned on examination.
Click as Relevance
Dealing with Position Bias

Model parameters, $p(x_i)$, can be learned efficiently from large amounts of log data.
Click as Preference

Hypothesis: if d_i is positioned above d_{i+k} and we observe no click on d_i we observe a click on d_{i+k}, then d_{i+k} is more relevant than d_i for q.

- assumes top-down, serial scanning of ranked list.
- addresses position bias effects.
- preference labels tend to be less noisy than point-wise relevance labels.
- correlation is not perfect.
Click as Preference

\[C = \{ \langle q_0, d_0, 1 \rangle, \langle q_0, d_1, 0 \rangle, \langle q_0, d_2, 1 \rangle, \ldots, \langle q_0, d_0, 0 \rangle, \langle q_0, d_1, 1 \rangle, \langle q_0, d_2, 1 \rangle, \ldots, \langle q_1, d_0, 1 \rangle, \langle q_1, d_1, 0 \rangle, \langle q_1, d_2, 0 \rangle, \ldots \} \]

\[C^* = \{ \langle q_0, d_0 \succ d_1, .75 \rangle, \langle q_0, d_0 \succ d_2, .99 \rangle, \langle q_0, d_0 \succ d_3, .50 \rangle, \ldots, \langle q_1, d_0 \succ d_1, .99 \rangle, \langle q_1, d_0 \succ d_2, .99 \rangle, \langle q_1, d_0 \succ d_3, .99 \rangle, \ldots \} \]

\((d_i \succ d_j: d_i \text{ is preferred to } d_j.\)
a fixed presentation order will result in a biased sampling of possible preferences.
- will never observe data for \(d_1 \succ d_2 \).
- can be addressed with randomization.
Click as Preference

Summary

- reliable representation of relative relevance data.
- no absolute relevance score.
- no clear mapping to classic evaluation metrics except τ.
Comparing Systems

- Using click logs from a single production system introduces biases in relevance or preference estimates.
- Batch experiments address biased samples by *pooling*.
- Production experiments addressed biased samples by selective system application (e.g. A/B testing).
A/B Testing

Bucket-Test($\{f_0, \ldots, f_n\}, \{w_0, \ldots, w_n\}, U, T$)

1. $\{U_0, \ldots, U_n\} \leftarrow \text{Partition-Users}(U, \{w_i\})$
2. apply f_i to user population U_i for duration T.
3. $\{C_1, \ldots, C_n\} \leftarrow \text{Collect-Logs}(\{U_i\})$
4. $\{\mu_1, \ldots, \mu_n\} \leftarrow \text{Compute-Metrics}(\{C_i\})$
A/B Testing

(a) A (25%)

(b) B (50%)

(c) C (25%)
A/B Testing

- Powerful tool for comparing system performance.
- Because the types of queries change with time (and location and demographics and ...), partitioning has to be very carefully performed.
Interleaving

Hypothesis: We can more efficiently use interaction data by explicitly comparing systems and exploiting the ranked list structure of web search.

- A/B testing computes metric for each bucket and then compares system metrics.
- More efficient to directly compare systems.
Interleaving

(a) A vs. B (25%)

(b) A vs. C (50%)

(c) B vs. C (25%)
Interleaving

Input: Rankings $A = (a_1, a_2, \ldots)$ and $B = (b_1, b_2, \ldots)$

$I \leftarrow ()$; $k_a \leftarrow 1$; $k_b \leftarrow 1$;

$AFirst \leftarrow \text{RandomBit()}$ \hfill \text{decide which ranking gets priority}

while ($k_a \leq |A|$) \land ($k_b \leq |B|$) **do** \hfill \text{if not at end of A or B}

- \text{if $(k_a < k_b) \lor ((k_a = k_b) \land (AFirst = 1))$ then}
 - \text{if $A[k_a] \notin I$ then $I \leftarrow I + A[k_a]$ \hfill \text{append next A result}}$
 - $k_a \leftarrow k_a + 1$
 - \text{else}
 - \text{if $B[k_b] \notin I$ then $I \leftarrow I + B[k_b]$ \hfill \text{append next B result}}$
 - $k_b \leftarrow k_b + 1$

end if

end while

Output: Interleaved ranking I

[Chapelle et al. 2012]
Interleaving

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>342</td>
<td>124</td>
<td>342</td>
</tr>
<tr>
<td>576</td>
<td>213</td>
<td>124</td>
</tr>
<tr>
<td>234</td>
<td>543</td>
<td>576</td>
</tr>
<tr>
<td>943</td>
<td>765</td>
<td>213</td>
</tr>
<tr>
<td>472</td>
<td>852</td>
<td>234</td>
</tr>
</tbody>
</table>

(a) A
(b) B
(c) interleaved
Interleaving

\[
\begin{align*}
\left(E \left[\frac{C_A - C_B}{C} \right] > 0 \right) & \rightarrow (A \succ B) \\
\left(E \left[\frac{C_A - C_B}{C} \right] < 0 \right) & \rightarrow (B \succ A)
\end{align*}
\]

\(C_i \) total clicks on results from \(i \)

\(C \) total clicks
Interleaving

- Correlated with editorial relevance target at lower cost.
- Converges much faster than editorial data.

[Chapelle et al. 2012]
Summary

- Production evaluation is increasingly used in industry as the method for testing and deploying large systems.
- Many ways in which you can make mistakes so you have to be very careful interpreting results.
Summary

- Evaluation is a **fundamental** part of building and understanding a production search engine.
- Many issues are still actively being researched.
 - Dealing with ambiguous queries.
 - Personalized metrics.
 - Multidimensional relevance (e.g. local, temporal).