Many modern text processors, such as \LaTeX{} (which this text is typeset with), use a sophisticated dynamic-programming algorithm to ensure that lines are well-aligned on the right-hand side of a page. Clearly, the aesthetics of a typeset document depend on choosing good positions for line breaks.

The Text-Alignment Problem

An instance of the text-alignment problem is specified by positive integers \(l_1, \ldots, l_n \), representing the lengths of the words in an \(n \)-word text, and \(L \), corresponding to the maximum line length, as well as by a penalty function \(P : \mathbb{N} \to \mathbb{R} \). The penalty function is used to characterize the badness of a line, i.e., how ill-aligned it is. More precisely, a line consisting of words \(l_i, \ldots, l_j \) (with \(i \leq j \) and \(l_i + \ldots + l_j + j - i \leq L \) has a gap of

\[
G := L - (l_i + \ldots + l_j + j - i)
\]

and badness \(P(G) \); the additional term \(j - i \) accounts for the spaces between words. The objective is to insert an arbitrary number of line breaks between the \(n \) words such that

- there are no empty lines,
- no line has length more than \(L \), and
- the sum of the lines’ badnesses is minimized.

Greedy?

A natural inclination is to use a greedy algorithm: if a word fits, add it to the line. However, the following example shows that such a strategy does not work: Assume \(P(G) = G^3 \) and let \(l_1 = 3 \), \(l_2 = 4 \), \(l_3 = 1 \), \(l_4 = 6 \), and \(L = 10 \). The greedy algorithm puts the first three words on the first line and the fourth on the second, incurring penalties of \(3^3 + 4^3 = 64 \), whereas having two words per line results in a total badness of \(2^3 + 2^3 = 16 \), which is considerably lower.

A Dynamic-Programming Solution

For \(i = 0, 1, \ldots, n \), define \(m[i] \) as the optimal badness for aligning \(l_1, \ldots, l_i \). Set \(m[0] = 0 \) and, for values of \(i \) such that \(l_1 + \ldots + l_i + i - 1 \leq L \), set

\[
m[i] = P(L - l_1 + \ldots + l_i + i - 1).
\]

For larger values of \(i \), set

\[
m[i] = \min_k (m[k - 1] + P(L - l_k + \ldots + l_i + i - k))
\]
recursively, where k ranges over all values k such that $l_k + \ldots + l_i + i - k \leq L$. The intuition behind the recurrence is that one finds the best choice k for starting the last line, adding $m[k - 1]$ for the optimal badness of aligning l_1, \ldots, l_{k-1} and the penalty of the last line with words l_k, \ldots, l_i. When computing $m[i]$, storing said value k in an auxiliary array $s[i]$ as $s[i] = k$ allows for fast solution recovery once $m[n]$ is computed: The last line contains words $l_{s[n]}$ to l_n; the penultimate line those from $l_{s[s[n]-1]}$ to $l_{s[n]-1}$; etc.

Clearly, array $m[\cdot]$ can be filled in $O(un)$ time, where u is the maximum number of values k that need to be considered when computing an entry $m[i]$. Clearly, $u \leq L$. Under the reasonable assumption that $L = O(1)$, i.e., if L is independent of n, filling $m[\cdot]$ takes linear time. Reconstructing a solution from the filled array is easily seen to take at most n steps.

Not counting the final line. It is uncustomary to consider a penalty for the last line as is done by the algorithm above. To that end, consider the following modification: For $i = 0, 1, \ldots, n - 1$, compute $m[i]$ as shown above. Then, compute the last entry according to

$$m[n] = \min_k m[k - 1],$$

where k again ranges over all values k such that $l_k + \ldots + l_n + n - k \leq L$.