Problem 2-1 (Sort recurrences) 8 Points

Sort the following recurrences in increasing order of growth of the corresponding functions. Justify (very) briefly.¹

(a) \(T(n) = 16T(n/4) + n; \)
(b) \(T(n) = 2T(n/4) + n; \)
(c) \(T(n) = 3T(n/5) + \log n; \)
(d) \(T(n) = 9T(n/3) + n^2; \)
(e) \(T(n) = T(n/3) + 10; \)
(f) \(T(n) = 9T(n/3) + n^3; \)
(g) \(T(n) = 8T(n/2) + n^3. \)

Problem 2-2 (Methods for Solving Recurrences) 12 points

Consider the recurrence \(T(n) = T(n/3) + T(n/2) + n. \)

(a) (4 Points) Using a recursion tree, determine a tight asymptotic upper bound on \(T(n). \)
(b) (4 Points) Prove your upper bound using induction.
(c) (4 Points) Using the substitution method, solve the recurrence \(U(n) = 4U(\lceil \sqrt{n} \rceil) + 1 \) with \(U(2) = 1. \)

Problem 2-3 (Fun with Recurrences) 15 Points

Previous: Fall 16.

For instructive purposes, consider the recurrence

\[
T(n) = \sqrt{n}T(\sqrt{n}) + n, n > 1, T(1) = 1.
\]

In an attempt to solve it, one simplifies the equation for \(T(n) \) by dividing it by \(n \):

\[
\frac{T(n)}{n} = \frac{T(\sqrt{n})}{\sqrt{n}} + 1.
\]

¹For this entire homework assignment, you may ignore the fact that the argument to \(T \) may not be an integer.
or, equivalently, using the substitution $S(n) = T(n)/n$,

$$S(n) := S(\sqrt{n}) + 1$$

Now

$$S(n) = S(\sqrt{n}) + 1 = S(n^{1/4}) + 2 = \ldots = S(n^{1/\log n}) + (\log \log n - 1) = \log \log n,$$

and $T(n) = n \log \log n$.

The following three recurrences can be solved similarly by a clever change of variables:

(a) (5 Points) $T(n) = \frac{n \cdot T(n-1)}{n+2}$, $n > 1$, $T(1) = 1$;

(b) (5 Points) $nT(n) = (n - 2)T(n - 1) + 3$, $n > 2$, $T(1) = T(2) = 1$;

(c) (5 Points) $T(n) = 3T(n - 1) - 2T(n - 2)$, $n > 2$, $T(2) = 1$, $T(1) = 0$.

Problem 2-4 (Counting Inversions) 16 points

Let $A[1 \ldots n]$ be an array of pairwise different numbers, where for simplicity you may assume that n is a power of two. We call pair of indices $1 \leq i < j \leq n$ an inversion of A if $A[i] > A[j]$. The goal of this problem is to develop a divide-and-conquer based algorithm running in time $\Theta(n \log n)$ for computing the number of inversions in A.

(a) (8 points) Suppose you are given a pair of sorted integer arrays A and B of length $n/2$ each. Let C an n-element array consisting of the concatenation of A followed by B. Give an algorithm (in pseudocode) for counting the number of inversions in C and analyze its runtime. Make sure you also argue (in English) why your algorithm is correct.

(b) (8 points) Give an algorithm (in pseudocode) for counting the number of inversions in an n element array A that runs in time $\Theta(n \log n)$. Make sure you formally prove that your algorithm’s running time (e.g., write the recurrence and solve it.)

(Hint: Combine merge sort with part (a).)