Problem 1-1 (Asymptotic Comparisons) 10 Points

For each of the following pairs of functions \(f(n) \) and \(g(n) \), state whether \(f \) is \(O(g) \); whether \(f \) is \(o(g) \); whether \(f \) is \(\Theta(g) \); whether \(f \) is \(\Omega(g) \); and whether \(f \) is \(\omega(g) \). (More than one of these can be true for a single pair!)

(a) \(f(n) = 3n^9 + \log(n) + 38; \quad g(n) = \frac{4n^{30} + 5n^2 + 4}{111} - 52n. \)
(b) \(f(n) = \log(n^2 + 3n); \quad g(n) = \log(n^4 - 1). \)
(c) \(f(n) = \log(2^{n^2} + n^2); \quad g(n) = \log(n^{372}). \)
(d) \(f(n) = n^{37} \cdot 2^n; \quad g(n) = n^2 \cdot 5^n. \)
(e) \(f(n) = (n^n)^3; \quad g(n) = n(n^3). \)

Problem 1-2 (Counting Inversions) 13 points

Let \(A[1, \ldots, n] \) be an array of \(n \) distinct numbers. If \(i < j \) and \(A[i] > A[j] \), then the pair \((i, j)\) is called an inversion of \(A \).

(a) (2 points) List all inversions of the array \(\langle 8, 5, 2, 7, 9 \rangle \).
(b) (3 points) Which arrays with distinct elements from the set \(\{1, 2, \ldots, n\} \) have the smallest and the largest number of inversions and why? State the expressions exactly in terms of \(n \).
(c) (5 points) What is the relationship between the running time of INSERTION-SORT and the number of inversions \(I \) in the input array? Justify your answer.
(d) (3 points) [Extra credit] Let \(A[1, \ldots, n] \) be a random permutation of \(\{1, 2, \ldots, n\} \). What is the expected number of inversions of \(A \). What can you conclude about the average case running time of INSERTION-SORT (where the average is over all arrays \(A \) of size \(n \))?

Hint: Recall the linearity of expectation, i.e., for any real \(a, b, c \) and any random variables \(X, Y, \)

\[
E(aX + bY + c) = aE(X) + bE(Y) + c.
\]
Problem 1-3 (The Same or Not the Same?) 10 points

The following two functions both take as arguments two \(n \)-element arrays \(A \) and \(B \):

Magic-1\((A, B, n)\)

\[
\text{for } i = 1 \text{ to } n \\
\quad \text{for } j = 1 \text{ to } n \\
\quad \quad \text{if } A[i] \geq B[j] \text{ return FALSE} \\
\text{return TRUE}
\]

Magic-2\((A, B, n)\)

\[
\text{temp} := A[1] \\
\text{for } i = 2 \text{ to } n \\
\quad \quad \text{if } A[i] > \text{temp then } \text{temp} := A[i] \\
\quad \text{for } j = 1 \text{ to } n \\
\quad \quad \text{if } \text{temp} \geq B[j] \text{ return FALSE} \\
\text{return TRUE}
\]

(a) (2 points) Both of these procedures return TRUE if and only if the same condition holds on the arrays \(A \) and \(B \) holds. Describe this condition (in words).

(b) (5 points) Analyze the worst-case running time for both algorithms using the \(\Theta \)-notation.

(c) (3 points) Does the situation change if we consider the best-case running time for both algorithms?

Problem 1-4 (Selection Sort) 12 points

Consider sorting \(n \) numbers stored in array \(A \) by first finding the largest element of \(A \) and exchanging it with the element in \(A[n] \). Then find the second largest element of \(A \) and exchange it with \(A[n-1] \). Continue in this manner for the first \(n-1 \) elements of \(A \).

(a) (5 points) Write (non-recursive) pseudocode for this algorithm, which is known as selection sort. What loop invariant does this algorithm maintain? Why does it need to run for only the first \(n-1 \) elements, rather than for all \(n \) elements? Give the best-case and worst-case running times of selection sort in \(\Theta \)-notation.

(b) (2 points) Compare the running time of selection sort to the one of insertion sort.

(c) (5 points) Devise a recursive variant of your algorithm in (a) by following the divide-and-conquer paradigm. Find a recurrence relation describing the running time of your algorithm and solve it.