Greedy Algorithm

Activities Selection: \(a_i = \{s_i, f_i\}, \{s_2, f_2\}, \ldots, \{s_n, f_n\} \)

1. Select the largest set of non-overlapping activities.
2. Observation: OK to start with activity ending first.
3. Then, take the next activity whose starting time is closest to the finishing time of first activity.

Recursive (already sorted with finishing time)

\[
\text{Rec - } A S(s, f, i) \rightarrow \text{Initially } o
\]
\[
m \leftarrow i + 1
\]

while \(m \leq n \) & \(s_m < f_i \)
\[
m \leftarrow m + 1
\]

if \(m \leq n \)
\[
\text{Return } \{s_m\} \cup \text{Rec - } A S(s, f, m)
\]
else: Return \(o \)

Iterative

Top-down: AS(s, f)

\[
i \leftarrow 1
\]

for \(m = 2 \) to \(n \)
\[
\text{if } s_m \geq f_i
\]
\[
A_i = A_i \cup \{s_m\}
\]
\[
A_i = m
\]

Return \(A_i \)

Greedy is often Dynamic Programming with 1 known subproblem.

Iterative version of Greedy Algorithm is top-down.
Greedy stays ahead. Show (by induction) \(V_i \) the first \(i \) "steps" greedy algorithm are "better" than the first \(i \) "steps" of any other algorithm (including optimal)

(a) do it by induction,
(b) since true for \(i = 1 \) last step \(\Rightarrow\) greedy is opt-
(c) trick part define "step", "better".

As: \(V \uparrow \forall \) schedule \(Z \), define:

\[
F_i(Z) = \text{finish time of } i^{th} \text{ scheduled activity in } Z
\]

Inductive Claim: \(\forall i, Z, F_i(\text{greedy}) \leq F_i(Z) \)

Proof: Induction on \(i \), \(i = 1 \) (just the definition of greedy algo).

Assume true up to \(i = m \),

Greedy: \(\#1 \cdots \#m+1 \)

Z: \(\#1 \cdots \#m+1 \)

\[f_m \leq f_m(Z) \leq s_{m+1}(Z) \]

So, \(f_{m+1} \leq f_{m+1}(Z) \)

Corollary: \(|\text{Greedy}| \geq |Z| \)
Local Search: Argue always safe to include (one greedy choice in opt in optimal.

(*) Take \(v \in \text{opt} \), construct \(\text{opt}' \) not worse than \(\text{opt} \) which has one greedy choice (and reduces to the same subproblem as greedy.)

Key Step: Argue subproblem at \(\text{opt}' \) = subproblem greedy.

Essentially, induction on size of activity selection.

Huffman Codes

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>fixed</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>110</td>
<td>101</td>
</tr>
<tr>
<td>opt</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>110</td>
<td>1100</td>
</tr>
</tbody>
</table>

Prefix-Free Encoding: \(\forall c_1, c_2 \), then, encoding of \(c_1 \) named \(E(c_1) \) is not prefix of \(E(c_2) \)

\[
\text{Cost}(E(c)) = \sum f(c) |E(c)|
\]

\[
\text{Cost (fixed)} = 3 \quad ; \quad \text{Cost opt} = 2.24
\]
Claim 1: Opt. never has nodes of degree 1 (one child)

Claim 2: Let T_1, T_2 be two solid trees which are identical except 2 frequencies swap.

T_1: l_1 / l_2

T_2: l_1 / l_2

$l_1 > l_2$ & $x < y$

$\text{cost}(T_2) \leq \text{cost}(T_1)$

Corollary: If we sort frequencies, then optimal lengths