1 Activities Selection

Given: \(a = [s_1, f_1], [s_2, f_2], \ldots, [s_n, f_n] \)

1. Select the largest set of non-overlapping activities.
2. Observation: OK to start with activity ending first.
3. Then, take the activity whose starting time is closer to the finishing time on first activity.

Recursive (already sorted with finishing time)

\[
\text{Rec-As}(s, f, i) \begin{cases} i \text{ is initially 0} \\
1 & m \leftarrow i + 1 \\
2 & \text{while } m \leq n \land s_m < f_i \text{ do} \\
3 & \quad m \leftarrow m + 1 \\
4 & \quad \text{if } m \leq n \text{ then} \\
5 & \quad \quad \text{return } a_m \cup \text{Rec-As}(s, f, m) \\
6 & \quad \text{else} \\
7 & \quad \quad \text{return } \emptyset
\end{cases}
\]

Iterative

\[
\text{Top-Down-As}(s, f) \\
\begin{array}{l}
1 & i \leftarrow 1 \\
2 & \text{for } m = 2 \text{ to } n \text{ do} \\
3 & \quad \text{if } s_m \geq f_i \text{ then} \\
4 & \quad \quad A = A \cup a_m \\
5 & \quad \quad i = m \\
6 & \text{return } A
\end{array}
\]

- Greedy is often Dynamic Programming with 1 known subproblem
- Iterative version of Greedy Algorithm is top-down
□ **Greedy Stays Ahead:** Show (by induction) \(\forall i \), the first \(i \) "steps" of the greedy algorithm are "better" than the first \(i \) "steps" of any other algorithms (including an optimal algorithm)

A. Do it by induction

B. Since it is true \(\forall i \) to the last step \(\Rightarrow \) greedy algorithm is optimal

C. Tricky part: Defining "step" and "better"

With Activities Selection: \(\forall i, \forall \text{schedules } Z \), define:

\[F_i(Z) = \text{finishing time of } i^{th} \text{ scheduled activity in } Z \]

Inductive Claim: \(\forall i \forall Z, F_i(\text{greedy}) \leq F_i(Z) \)

Proof: Induction on \(i, i = 1 \) (just the definition of greedy algorithm)

Assume true for \(i = m \):

<table>
<thead>
<tr>
<th>Greedy</th>
<th>#1</th>
<th>#2</th>
<th>...</th>
<th>#m</th>
<th>#m+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>#1</td>
<td>#2</td>
<td>...</td>
<td>#m</td>
<td>#m+1</td>
</tr>
</tbody>
</table>

\[f_m \leq f^Z_m \leq s^Z_{m+1} \]

So, \(f_{m+1} \leq f^Z_{m+1} \)

□ Corollary: \(|\text{Greedy}| \leq |Z| \)

□ **Local Swap:** Argue that it is always safe to include (one) greedy choice in the optimal solution.

(*) \(\forall OPT \), construct \(OPT' \) that is not worse than \(OPT \) which has one greedy choice (and reduces to the same subproblem as greedy).

□ **Key Step:** Argue subproblem of \(OPT' = \text{subproblem of greedy} \)

□ Essentially, it is induction on the size of activity selection.
2 Huffman Codes

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>fixed</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>opt</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
</tr>
</tbody>
</table>

- Prefix-Free Encoding:
 \[\forall c_1, c_2, \text{encoding of } c_1 \text{ named } E(c_1) \text{ is not prefix of } E(c_2) \]
 \[\text{cost}(E) = \sum f(c') |E(c')| \]

 \[\text{cost(fixed)} = 3 \]

 \[\text{cost OPT} = 2.24 \]

- Correctness

 Claim 1: \(\text{OPT} \) never has nodes of degree 1 (one child)

 Claim 2: Let \(T_1, T_2 \) be solid trees which are identical except for 2 swapped frequencies:

 \[T_1: \quad l_1 \quad l_2 \quad T_2: \quad l_1 \quad l_2 \]

 \[B \quad A \quad A \quad B \]

 \[l_1 \geq l_2 \land A \leq B \]

 \[\text{cost}(T_2) \leq \text{cost}(T_1) \]

 Corollary: If we sort frequencies in ascending order, then optimal lengths will decrease.