Corpus Linguistics for NLP

Adam Meyers
New York University
2015
Outline

• Text Corpora in NLP
• Corpus Selection
• Corpus Annotation:
 – Purpose
 – Representation Issues
 – Linguistic Methods
 – Measuring Quality
• Role of Corpora & Annotation in Final Projects
Characters, Encodings, Etc.

- A Text Corpus is a set of texts
- Corpora can be derived in different ways
 - Text that was originally electronic (published, letters, etc.)
 - Does it include “non-standard” characters?
 - Transcripts of spoken language
 - No punctuation
 - Possible representation of pauses
 - Possibly including pauses and false starts
 - Optical Character Recognition (with errors)
- Encodings (mappings between bits and characters)
 - Old Standards (English): ASCII (less than 1 byte), ISO-8859 (2 bytes)
 - New standards UTF-8 (back-compat w/ASCII) and UTF-16
 - More characters/alphabets
 - UTF-8 encoded: 1st 128 chars use 1 byte, next 1920 char use 2 bytes, more chars use 3 or 4 bytes
 - UTF-16 encoded in 2-byte and 4-byte units
 - Other encodings: GB (e.g., Chinese), EUC (e.g., Japanese)
Types of Texts

• “Genre” divides text into types along several dimensions
 – **Register**? (socio-ling division by social setting) : Fiction, News, Magazine, Scholarly Article, Legal Documents, Correspondence, Email, Discussion Groups, Twitter, Text Messages, Phone Calls, Instructions, Oral Narratives, Webpages
 – **Topic**: Sports, Games, Art, Natural Science, Social Science, Business, Fiction, Literary Criticism, …

• Spoken language transcripts have different properties from standard written text (published text, correspondence, etc.)
 – Differences in Basic Units
 • Pauses/intonation, but no punctuation/capitalization
 – If transcribed at all, encoding is not standard
 – Additional lexical items, syntactic phenomena
 • Disfluencies: false starts, stutters, ..
 • “uh”, “um”, “like”,
Choosing a Corpus for a Project

• Specialize in a single type of corpus
 – Simplifies study of a language phenomenon
 • If noted, this is normal for academic studies
 – Particular corpus is appropriate for your project
 • A telephone Question Answer system → corpus of phone conversations

• A “Diverse” Corpus
 – For development of versatile system
 – To focus on common features of different genres
 – Keep corpora separate & focus on adaptability of system

• Your own corpus or an existing standard corpus
 – Own corpus requires preparation, but will be suitable for your needs
 • Removing unwanted fields (tables), formatting codes, …
 – Standard/Shared Corpus: Next Slide
Standard/Shared Corpora

- Why have shared or standard Corpora?
 - Opportunities for comparison and collaboration
 - Use other's expertise/avoid duplicate effort

- Brown Corpus (Kucera and Frances 1967)
 - 1 million words, sort of open source now
 - “balanced” (“diverse” is easier to define)
 - prose fiction, poetry, news, general interest, government documents, biography, ...

- Work using corpora flourished starting in the 1990s
 - Mostly government sponsored, mostly newspaper corpora
 - Wall Street Journal Corpus, incl Penn Treebank (1 million words)
 - Licensed by Linguistic Data Consortium
 - Depends on what was widely available
 - Hansard Corpus – Canadian French/English Parliamentary Proceedings

- Return to “diverse” corpora
 - British National Corpus (BNC) – 100 million words, 1994
 - American National Corpus, incl Open American National Corpus (OANC) 2004 & ongoing
 - 21 million words (and growing) including (15 million words in OANC)
Statistical Info Derivable from Corpora (without Annotation)

- **Frequency:**
 - words: *eat, ate, cats, cat, Mary, because, ...*
 - base forms: *eat, cat, Mary, because, ...*
 - characters: *a, e, i, z, q, &, ., 5, 3, ?, @, ..*

- **Examples of Higher Level Statistics:**
 - Frequency of bi-grams: *ate the, the cat, house was, ...*
 - tri-grams, 4-grams, 5-grams, ... N-grams
 - **TF-IDF:** Term Freq \times Inverse Document Freq
 - TF = Frequency of term in corpus
 - IDF = Num of Docs \div Num of Docs containing term
 - Examples: 100 documents, 100 instances of the word *cat*
 - If all in same document: $100 \times 100/1 = 10,000$
 - If each in a different document: $100 \times 100/100 = 100$
 - Used in Information Retrieval, Terminology Extraction, and other areas
Multi-lingual Corpora

• Parallel Corpora: bi-texts, tri-texts, etc.
 – 2 (or more corpora), such that corresponding segments are (literal) translations of each other
 – Useful for Machine Translation
 – Ex: Hansard Corpus

• Comparable Corpora
 – 2 (or more corpora) about similar/same topics, e.g., Wikipedia articles in multiple languages
Role of Manual Annotation in CL

• Together, annotation and specifications define a task
 – Can be used to “score” the output of any type of system

• For supervised machine learning, corpus is divided
 – A **Training** corpus is used to acquire statistical patterns
 – A **Test** corpus is used to measure system performance
 – A **Development** corpus is similar to a test corpus
 • Systems are “tuned” to get better results on the Dev corpus
 • Test corpora are used infrequently and system should not be tuned to get better results

• More annotated text often yield more effective patterns

• Different genres may have different properties
 – Systems can “train” separately on different genres
 – Systems can “train” on one diverse corpus
Annotation by Directly Marking Text

- Example: The Penn Treebank
- Input: This is a sentence.
- Output: (S (NP (DT This))
 (VP (VBZ is)
 (NP (DT a)
 (NN sentence)))
 (. .))

- Can be difficult to align original text with the annotation
 - Spaces, newlines, etc. not explicitly represented
 - Words --> tokens not always obvious
 - cannot --> can/MD not/RB
 - 'Tis → T-/PRP is/VBZ
 - fearlast → fear/NN last/JJ
 - token standardization, typos and other accidental changes
Encoding Annotation with a Markup Language

• Input: *This is a sentence.*
• Output: `<S><NP><DT>This</DT></NP> <VP><VBZ>is</VBZ> <NP><DT>a</DT> <NN>sentence</NN></NP><VP><.></S>`
 – (all on one line, preserving spaces)

• Markup language
 – Markup languages are designed to add information to text and typically distinguish beginning and ending tags `<X>` vs. `</X>`
 – Examples
 • HTML – language for website creation
 • XML, SGML – standards for more specific markup languages

• Programs often treat text and markup separately, e.g., turn markup into instructions (text color = red, bold, underline, italic, hyperlink, ...).
 – Example program: web browser treats html markup as instructions
• Annotation is usually designed so deleting the markup will remove all changes
 – `sed 's/<[^>]*>// annotated_file > copy_of_original_file`
 – `diff original_file copy_of_original_file`
• Markup relies on assumption that certain characters will not appear in the original text (`<` and `>`)
 – Suppose the corpus included the sentence: “I used an “<NP>” tag today”
 – To handle this special characters are often substituted, e.g., html uses the following codes for ampersands and greater than signs
 • `&`
 • `>`
 – See for example http://rabbit.eng.miami.edu/info/htmlchars.html
 – Same/similar codes are often used in non-html text for NLP purposes
 – This adds a layer of complexity if one wants to compare (e.g., align) the annotated version with the original text.
Offset Annotation

• Many newer annotation frameworks use annotation that “points” to the original file
 – There is a file of plain text containing the words, sentences, etc. being classified.
 – 1 or more annotation files “point” to positions in the original file by means of character offsets from the beginning of the file.

• For example, a tag of the form:
 – \(<S :start 0 \text{ end: } 57>\) could mean that there is a sentence beginning at the start of the file and ending 57 characters after the start of the file.
 – As in many programming environments, positions in strings are before and after characters and begin with 0, e.g.,
 • the python slice: 'This string'[0:4] selects the substring between 0 and 4, assuming: $0^1\, T\, h\, i\, s\, \, s\, t\, r\, i\, n\, g$
Offset Annotation – Slide 2

• Overcomes the shortcomings of other methods
 – No special characters are needed
 – Relation to original text transparent
 – Multiple Annotations with the Same Scheme
 • Easy to Compare
 – Multiple Annotations with Different Schemes
 • Easier to compare, combine, etc.

• Difficult to read without programs (visualization tools, tools that write-out inline tag versions, etc.)
Annotation of Annotation

- Annotation Often Performed in Layers
 - One Project (or phase) Annotates Constituents
 - Another Project (or phase) Annotates Relationships Between Those Constituents

- Typical Cases:
 - Coreference:
 - Constituents X and Y are “mentions” of one Entity
 - Argument Structure
 - Predicate is in relation R with X as ARG1 and Y as ARG2

- 2 Layers of Annotation for: *John and Mary said that they were leaving.*
 - \(NP_1 = [\text{John and Mary}], \) \(\text{verb}_1 = \text{said}, \) \(NP_2 = [\text{they}], \) \(S_1 = [\text{that they were leaving}] \)
 - Coref\((NP_1,NP_2),\) ARG0\((\text{verb}_1,NP_1),\) ARG1\((\text{verb}_1,S_1)\)

- Examples of Projects: ACE, Penn Treebank + PropBank, NomBank and PDTB
Annotation Entry Tools

• Help humans create computationally viable annotation
 – simulate inline annotation, while creating offset annotation

• Well-formedness
 – Only legal labels are permitted
 – Other constraints can be hard-coded (e.g., distance)
 – Constraints can be automated
 – Warning statements can be included for “unusual” labelings

• Ease of Annotation
 – Specification help menus can be included
 – System can automatically propose next item
 – Common options can be automated, e.g., previous tags for particular strings can be proposed by system
The MAE annotation tool

- Original (Amber Stubbs at Brandeis):
 - http://code.google.com/p/mae-annotation/
- Alternative version (modified at NYU by Giancarlo Lee):
 - http://nlp.cs.nyu.edu/meyers/IE_TECH_NYU.html
- java -jar mae.jar
- Write dtd file: specifications for annotation
- Load txt file and create xml file
- Process
 - Mae separates the document into 2 XML fields:
 - Copy of original text between: "<TEXT><![CDATA[“ and “]]></TEXT>"
 - Annotation between <TAGS> and </TAGS>
- Annotation of entities is offset annotation
- Annotation of relations: refers to entity annotation
AttributionTask Example

• Let's do a little bit of sample “AttributionTask”
 – Load dtd file
 – Load file

• Let's assume the following specifications:
 – The ATTRIBUTION relation links a COMMUNICATOR with a MESSAGE
 – A COMMUNICATOR is an NP that is capable of making a statement. Subcategories include
 • person: fictional or nonfictional human being or a set of people
 • government_entity: country or organization run by a government
 • nongov_organization: corporation, nonprofit, etc. group with a structure
 • Other: must be capable of having a message, e.g., a book/text, cartoon duck, etc.
 – A Message must be either quoted material or a complete sentence, subcategories include
 • direct_quote – a quoted sentence
 • indirect_quote – complement clause (e.g., with “that”)
 • mixed_quote – sentence, part of which is quoted
 • insinutated_attribution – sentence associated with communicator in some other way
 • other: must be a message; must be a sentence that someone communicates, but not covered by specs.
• Let's look at the output file in emacs (my preferred text editor)
• In this output, character positions begin at the end of [CDATA[
 – i.e., \text{, } = 0
• Ctrl-U N – does following command N times
 – Ctrl-u N Ctrl-f – moves forward N spaces
• The relation (ATTRBIUTION) refer to the IDs of the entities: COMMUNICATOR and MESSAGE
• Each annotated tag has several feature=value pairs
 – Some are calculated by the program start/end
 – Others we added in explicitly (function/type/comment)
Now Let's Look at the Penn Treebank and NomBank

• Penn Treebank: wsj_0003.mrg
 – In emacs, Cntrl-Meta-B and Cntrl-Meta-N are useful for finding corresponding brackets, particularly in lisp-mode

• NomBank (and PropBank): wsj_0003.nombank
 – Identifies nodes in Penn Treebank Trees
 • Token:length-of-path-from-first-leaf
 – File = wsj_0003
 – Tree = 10 (11th tree because count starts with 0)
 – predicate amount(s) = token 11 (starting with 0)
 – sense/roleset number 01 – see lexical entry
 – ARG1 = (NP-SBJ-1 (NN asbestos)) as connected to its empty category
 – Support Chain = used + in (tokens 7 and 9)
Designing Content Component of Annotation Task

• Goals:
 – Task must describe desired phenomena
 – Humans must be able to make distinctions consistently

• Write detailed specs and test them on data
 – Use multiple annotators
 – Do annotators agree N %
 • Easy task: N>90%
 • Medium Task: N>85%
 • Difficult Task: N>70%, ...
 – Annotator Agreement is Upper Bound for System Output Quality
 • Different levels of agreement may be required for different applications

• If results are insufficient, revise specs and test new specs again
 – Repeat until results are good enough for your purpose
Measuring Annotation Quality

• Popular, but imperfect measurement of agreement:

\[
Kappa = \frac{\text{Percent (Actual Agreement)} - \text{Prob (Chance Agreement)}}{1 - \text{Prob (Chance Agreement)}}
\]

 – Kappa works provided it is possible to estimate “chance agreement”

 • For POS tagging each token gets exactly one tag. So estimates can be based on:

 – tags assigned to previous instances of token
 – tags assigned to tokens in general

• Multiply annotated data can be adjudicated and then each annotator can be scored against the corrected annotation. These same scores are often used for system evaluations:

\[
\text{Recall} = \frac{|\text{Correct}|}{|\text{Answer Key}|} \quad \text{Precision} = \frac{|\text{Correct}|}{|\text{System Output}|} \quad F - \text{Score} = \frac{2}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}}
\]
Annotation Tasks Vary in Difficulty

- Penn Treebank Part of Speech Tagging
 - Approximately 97% accuracy/agreement
 - Annotation = Fast process
- Penn Treebank Bracketing Annotation
 - Mid 90s? (a guess)
 - Now mostly by one experienced annotator (Ann Bies)
- PropBank – Approximately 93%
 - About 1 instance per minute
- NomBank – Approximately 85%
 - About 1 instance per 2 minutes
- Temporal Relations – (big variation, approx 75%)
- Sentiment Annotation (about 75%)
Who Should Annotate?

- **Most Common for Difficult Annotation**
 - Linguistics Academics: PostDocs and Students
 - Penn Treebank: Ann Bies
 - Other Experts: Classics students
 - Researchers (small projects)
 - Domain Experts (biology, physics, etc.)

- **Crowd Sourcing**
 - For easier annotation tasks
 - Some research breaking down hard tasks into sequences of easy ones
Crowd Sourcing

- Unknown annotators contribute via a web browser
- Tasks formulated so non-experts can do OK
 - break down decisions into multiple choice questions
 - use qualification tests
 - do more annotation and filter through consensus
- Amazon Turk: currently the most common conduit
 - Inexpensive (including Amazon's commission)
- Some People have set up their own sites, e.g.:
 - https://anawiki.essex.ac.uk/phrasedetectives/
- Limitation: difficult to formulate sophisticated tasks for crowd sourcing
URLs for Corpora w/English Bias

- Organizations that distribute corpora (and other resources) for fees
 - Linguistic Data Consortium: https://www.ldc.upenn.edu/
- The British National Corpus: http://www.natcorp.ox.ac.uk/
- American National Corpus (including OANC):
 - http://www.americannationalcorpus.org/
- The Brown Corpus (also through NLTK)
 - http://www.hit.uib.no/icame/brown/bcm.html
 - https://archive.org/details/BrownCorpus
- PubMed Corpus of Scientific Abstracts: http://www.americancorpus.org/
- Links to more links: http://www.americancorpus.org/
Annotation Project URLs w/ English Bias

• Examples of Shared Tasks with Associated Corpora & Annotation
 – Automatic Content Extraction: Coreference, Named Entities, Relations, Events, English, Arabic, Chinese, Spanish (little bit) – organized by US government
 • https://www.ldc.upenn.edu/collaborations/past-projects/ace
 – CONLL (yearly since 1997, diverse, internationally organized)
 • http://ifarm.nl/signll/conll/
 • I was on the committee for the 2008 & 2009 tasks
 – BIONLP (yearly IE task for biological texts)
 • http://aclweb.org/aclwiki/index.php?title=SIGBIOMED

• Penn Treebank: http://www.cis.upenn.edu/~treebank/
• PropBank: http://verbs.colorado.edu/~mpalmer/projects/ace.html
• NomBank: http://nlp.cs.nyu.edu/meyers/NomBank.html
• Penn Discourse Treebank: http://www.seas.upenn.edu/~pdtb/
• TimeML (incl TimeBank): http://www.timeml.org/site/index.html
• Pittsburgh Opinion Annotation: http://mpqa.cs.pitt.edu/
Role of Corpora & Annotation in Final Projects

- Programming projects usually require corpora
 - To run system on consistent, well-defined sets of data

- Annotated Data
 - Test Corpus = Answer Key
 - Training & Dev Sets – To develop system and/or train statistical systems

- Multi-Student Projects
 - 1 or 2 students can be responsible for annotation
 - Creating and Tuning Specifications
 - Annotating and Scoring (Measuring Annotation Quality)

- Corpus Creation and/or Annotation Can also be Main Topic of Project

- Crowd Sourcing – Another Possible Technique/Topic
 - Designing Tasks for Crowd Sourcing
 - Combining Crowd Sourced Results