Midterm Preparation

Adam Meyers
New York University
The Purpose of the Midterm?

• Pedagogical purposes
 – Track whether students learned parts of curriculum and what may need further clarification
 – Provide a motivating force for students to study the “important” parts of the curriculum
 – Clarify how to prepare students to do final projects

• Administrative purpose: determine 1/4 of grade

• Possible conflict
 – A difficult test makes pedagogical sense
 – An “acceptable” average grade may make administrative sense

• Current Strategy: Motivate test based on pedagogical objectives, but make it as open book as possible
 – You can bring materials, search the web, etc., but I will want you to solve the problems posed by the test
Outline

• Linguistic Resources & Descriptive Linguistics
 – Especially Corpus Annotation
• Rules used by Automated Procedures
 – Ones covered in Class
• Algorithms Discussed in Class
• How does Evaluation Work
Annotation

- You should be able to write usable specifications
- You should be able to annotate based on specifications
- You should understand some of the mechanics
 - Character offsets
 - A Markup language
 - BIO tags
- You should understand the difference between training and test corpora
Descriptive Linguistics

• The basic parts of speech and phrasal categories.
 – The difference between a determiners and an adjective
 – forms of verbs

• You know how to manually divide sentences into tokens

• You should know how to identify the head of a phrase

• You should be able to draw a phrase structure tree modeling the linguistic analysis of a sentence
Rules: Regular Expressions

• You should know how to write a basic regular expression
• You should know how to write a phrase structure rule including at least:
 – Context free rules
 – Left (or right) regular rules
• For a regular expression, you should be able to identify a set of phrase structure rules that describe the same language (set of strings)
Algorithms: Deterministic Finite State Machine

• Given:
 – Finite State Machine (FSM)
 – Input String
• Would the FSM recognize the string?
• Which sequence of states would be entered before recognition was complete?
• How would the FSM on the next slide process:
 – AababAB
 – AABB
DFSA for Regexp: $A(ab)^*ABB$?
Algorithms: Context-Free Generator

• Show the steps for randomly generating a sentence given:
 – A lexicon and a context-free grammar with start symbol S
• The algorithm expands each non-terminal into a randomly chosen right hand side.
• Going left to right, the first non-terminal symbol is always expanded first.
• The mechanism (as discussed in class) is to place each right hand side on top of the stack with the left-most symbol at the top of the stack.
Algorithms: The CKY parsing algorithm

- Fill in the triangular chart given a (short) sentence and a set of context free rules
- Remember
 - How the chart encodes start and end positions
 - That each rule is in Chomsky Normal Form
 - i.e., is binary branching
- See the next slide
6th Iteration of CKY Algorithm

<table>
<thead>
<tr>
<th>The clam</th>
<th>'s group</th>
<th>had knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

D NP POSSP NP S S [0,1] [0,2] [0,3] [0,4] [0,5] [0,6]
N, NP POSSP NP S S [1,2] [1,3] [1,4] [1,5] [1,6]
P OSS [2,3]
N,NP S S [3,4] [3,5] [3,6]
V, VP VP [4,5] [4,6]
N,NP [5,6]
Viterbi Decoding of HMM for *rose pickles*

- **Likelihood:**
 - *rose*: NNP .01, NN .02, VBD .05
 - *pickles*: NNP .001, NNS .03, VBZ .05

- **Transition Probabilities:**
Rose Pickles

- **Likelihood:**
 - *rose:* NNP .01, NN .02, VBD .05
 - *pickles:* NNP .001, NNS .03, VBZ .05

- **Fill in:** max (previous X transition X likelihood)
Rose/NNP Pickles/ VBZ

- Likelihood:
 - *rose*: NNP .01, NN .02, VBD .05
 - *pickles*: NNP .001, NNS .03, VBZ .05

- Fill in: max (previous X transition X liklihood)
Common Evaluation Metrics

• If all instances are classified
 – Accuracy = Correct/All-Instances

• If only some instances are classified
 – Precision = Correct/Instances in System Output
 – Recall = Correct/Instances in Answer Key
 – F-measure = Mean of Precision and Recall
 • Actually Harmonic Mean of Precision and Recall
 – \[\frac{2}{\left(\frac{1}{\text{precision}} + \frac{1}{\text{recall}} \right)} \]
Sample Precision and Recall

• System for finding holiday names
• Exactly 10 correct holiday names in hand-coded corpus (the answer key)
• The system marks 12 holiday names, 8 of which match the ones in the answer key.
 – Precision = 8/12 = .67
 – Recall = 8/10 = .80
 – F-measure = 2/(.80+.67) = .73
TFIDF

• TFIDF – Property of Term with respect to a document
 – keyword suitability, representativeness of a topic, etc.
 – Uses: Doc Retrieval, Term Extraction, etc.
• TF = frequency in a document
• IDF = number of documents in sample divided by number of documents containing word
• TFIDF = TF * log(IDF)
• Example: “rock” occurs 10 times in document X. It occurs in 100 out of 3000 documents in collection. TFIDF = 10*log(3000/100) = 34.01
Cosine Similarity Between Query and Document

\[
\text{Similarity}(A, B) = \frac{\sum_i a_i \times b_i}{\sqrt{\sum_i a_i^2 \times \sum_i b_i^2}}
\]

• Example:
 – the terms in the vectors include: animal, vegetable, mineral, monkey, golf enthusiast
 – The vector for the query is: [0,0,0,34,.8]
 – The vector for a given document is: [1,2,3,4,5]
 – What is the similarity?