Computer Systems Organization

Bits and Bytes

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com

Some slides adapted and modified from:
• Clark Barrett
• Jinyang Li
• Bryant and O’Hallaron
Bits and Bytes

- Representing information as bits
- How bits are manipulated?
- Integers
- Floating points
Our First Steps…
How do we represent data in a computer?

• How do we represent information using electrical signals?
• At the lowest level, a computer is an electronic machine.
• Easy to recognize two conditions:
 – presence of a voltage - we call this state “1”
 – absence of a voltage - we call this state “0”
Binary Representations

[Diagram showing voltage levels and transitions between 0 and 1 with corresponding voltage values: 3.3V, 2.8V, 0.5V, and 0.0V]
A Computer is a Binary Digital Machine

- Basic unit of information is the *binary digit*, or *bit*.
- Values with more than two states require multiple bits.
 - A collection of *two* bits has *four* possible states: 00, 01, 10, 11
 - A collection of *three* bits has *eight* possible states: 000, 001, 010, 011, 100, 101, 110, 111
 - A collection of *n* bits has 2^n possible states.
Encoding Byte Values

• **Byte = 8 bits**
 - Binary 00000000_2 to 11111111_2
 - Decimal: 0_{10} to 255_{10}
 - Hexadecimal 00_{16} to FF_{16}
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write $FA1D37B_{16}$ in C language as
 - 0xFA1D37B
 - 0xfa1d37b
Byte-Oriented Memory Organization

• Programs Refer to Virtual Addresses
 – Conceptually very large array of bytes
 – Actually implemented with hierarchy of different memory types
 – System provides address space private to particular "process"
 • Program being executed
 • Program can manipulate its own data, but not that of others

• Compiler + Run-Time System Control Allocation
 – Where different program objects should be stored
 – All allocation within single virtual address space
Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
Byte Ordering

• How are bytes within a multi-byte word ordered in memory?

• Conventions
 – **Big Endian**: Sun, PPC, Internet
 • Most significant byte has lowest address
 – **Little Endian**: x86
 • Most significant byte has highest address
Byte Ordering Example

• Big Endian
 – Least significant byte has highest address

• Little Endian
 – Least significant byte has lowest address

• Example
 – Variable x has 4-byte representation 0x01234567
 – Address given by &x is 0x100

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01</td>
<td>23</td>
<td>45</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>
Reading Byte-Reversed Listings

• Disassembly
 – given the binary file, get the assembly

• Example Fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

• Deciphering Numbers
 – Value: 0x12ab
 – Pad to 32 bits: 0x000012ab
 – Split into bytes: 00 00 12 ab
 – Reverse (little endian): ab 12 00 00
Examining Data Representations

• Code to print Byte Representation of data

typedef unsigned char* pointer;

void show_bytes(pointer start, int len){
 int i;
 for (i = 0; i < len; i++)
 printf("%p\t%2x\n",start+i, start[i]);
 printf("\n");
}

printf directives:
%p: Print pointer
%x: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```c
int a = 15213;
0x11fffffc8 0x6d
0x11fffffc9 0x3b
0x11fffffca 0x00
0x11fffffcb 0x00
```

Note: 15213 in decimal is 3B6D in hexadecimal
Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

```
int A = 15213;
long int C = 15213;
```
Representing Strings

- **Strings in C**
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character '0' has code 0x30
 - Digit i has code 0x30+i
 - String should be null-terminated
 - Final character = 0

- Byte ordering not an issue

```c
char S[6] = "18243";
```
How to Manipulate Bits?
Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And
- \(A \& B = 1 \) when both \(A=1 \) and \(B=1 \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A&B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Or
- \(A | B = 1 \) when either \(A=1 \) or \(B=1 \)

| A | B | A|B |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

Not
- \(\sim A = 1 \) when \(A=0 \)

<table>
<thead>
<tr>
<th>A</th>
<th>\sim A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)
- \(A ^ B = 1 \) when either \(A=1 \) or \(B=1 \), but not both

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A^B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Application of Boolean Algebra

- Applied to Digital Systems by Claude Shannon
 - 1937 MIT Master’s Thesis
 - Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

Transistor
General Boolean Algebras

• Operate on Bit Vectors (e.g. an integer is a bit vector of 4 bytes = 32 bits)

– Operations applied bitwise

\[
\begin{align*}
01101001 \ & \ 01101001 \ & \ 01101001 \\
\& \ 01010101 \ & \ | \ 01010101 \ & \ ^ \ 01010101 \ & \ ~ \ 01010101 \\
\hline
01000001 \ & \ 01111101 \ & \ 00111100 \ & \ 10101010
\end{align*}
\]
Bit-Level Operations in C

• **Operations &**, **|**, **~,** **^** Available in C
 - Apply to any “integral” data type
 - long, int, short, char, unsigned

• **Examples** (Char data type)
 - ~0x41 = 0xBE
 - ~01000001₂ = 10111110₂
 - ~0x00 = 0xFF
 - ~00000000₂ = 11111111₂
 - 0x69 & 0x55 = 0x41
 - 01101001₂ & 01010101₂ = 01000001₂
 - 0x69 | 0x55 = 0x7D
 - 01101001₂ | 01010101₂ = 01111101₂
Contrast: Logic Operations in C

• Contrast to Logical Operators
 – &&, ||, !
 • View 0 as “False”
 • Anything nonzero as “True”
 • Always return 0 or 1
 • Early termination

• Examples (char data type)
 – !0x41 = 0x00
 – !0x00 = 0x01
 – !!0x41 = 0x01

 – 0x69 && 0x55 = 0x01
 – 0x69 || 0x55 = 0x01
 – p && *p (avoids null pointer access)
Shift Operations

• **Left Shift:** \(x \ll y \)
 - Shift bit-vector \(x \) left by \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

• **Right Shift:** \(x \gg y \)
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - **Arithmetic shift (covered later)**
 - Replicate most significant bit on right

• **Undefined Behavior**
 - Shift amount < 0 or ≥ size

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ll 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (\gg 2)</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. (\gg 2)</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ll 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (\gg 2)</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. (\gg 2)</td>
<td>11101000</td>
</tr>
</tbody>
</table>
How to present Integers? (unsigned and signed)
Two Types of Integers

• Unsigned
 – positive numbers and 0

• Signed numbers
 – negative numbers as well as positive numbers and 0
Unsigned Integers

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

1 0 1 1 1 1 0 1 1

128 64 32 16 8 4 2 1

\[187 \]
Unsigned Integers

• An n-bit unsigned integer represents 2^n values: from 0 to $2^n - 1$.

<table>
<thead>
<tr>
<th></th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>
Unsigned Binary Arithmetic

- Base-2 addition - just like base-10!
 - add from right to left, propagating carry

\[
\begin{array}{c}
10010 \\
+ 1001 \\
11011
\end{array}
\quad
\begin{array}{c}
10010 \\
+ 1011 \\
11101
\end{array}
\quad
\begin{array}{c}
1111 \\
+ 1 \\
10000
\end{array}
\]
What About Negative Numbers?

People have tried several options:

<table>
<thead>
<tr>
<th>Sign Magnitude:</th>
<th>One's Complement</th>
<th>Two's Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 = +0</td>
<td>000 = +0</td>
<td>000 = +0</td>
</tr>
<tr>
<td>001 = +1</td>
<td>001 = +1</td>
<td>001 = +1</td>
</tr>
<tr>
<td>010 = +2</td>
<td>010 = +2</td>
<td>010 = +2</td>
</tr>
<tr>
<td>011 = +3</td>
<td>011 = +3</td>
<td>011 = +3</td>
</tr>
<tr>
<td>100 = -0</td>
<td>100 = -3</td>
<td>100 = -4</td>
</tr>
<tr>
<td>101 = -1</td>
<td>101 = -2</td>
<td>101 = -3</td>
</tr>
<tr>
<td>110 = -2</td>
<td>110 = -1</td>
<td>110 = -2</td>
</tr>
<tr>
<td>111 = -3</td>
<td>111 = -0</td>
<td>111 = -1</td>
</tr>
</tbody>
</table>

- **Issues**: balance, number of zeros, ease of operations
- **Which one is best? Why?**
Signed Integers

• With n bits, we have 2^n distinct values.
 – assign about half to positive integers and about half to negative

• Positive integers
 – just like unsigned: zero in *most significant* (MS) bit
 \[00101 = 5 \]

• Negative integers
 – In two’s complement form

In general: a 0 at the MS bit indicates positive and a 1 indicates negative.
Two's Complement

- Two's complement representation developed to make circuits easy for arithmetic.
 - for each positive number (X), assign value to its negative (-X), such that \(X + (-X) = 0 \) with "normal" addition, ignoring carry out

\[
\begin{array}{cccccc}
00101 & (5) & + & 11011 & (-5) & \Rightarrow \ 00000 & (0) \\
01001 & (9) & + & 10111 & (-9) & \Rightarrow \ 00000 & (0)
\end{array}
\]
Two’s Complement Signed Integers

• **MS bit** is sign bit.
• Range of an n-bit number: -2^{n-1} through $2^{n-1} - 1$.
 – The most negative number (-2^{n-1}) has no positive counterpart.

<table>
<thead>
<tr>
<th>-2³</th>
<th>2²</th>
<th>2¹</th>
<th>2⁰</th>
<th></th>
<th>-2³</th>
<th>2²</th>
<th>2¹</th>
<th>2⁰</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Converting Binary (2’s C) to Decimal

1. If MS bit is one, take two’s complement to get a positive number.

2. Get the decimal as if the number is unsigned (using power of 2s).

3. If original number was negative, add a minus sign.

<table>
<thead>
<tr>
<th>n</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
</tr>
</tbody>
</table>
Examples

\[X = 00100111_{\text{two}} \]
\[= 2^5 + 2^2 + 2^1 + 2^0 = 32 + 4 + 2 + 1 \]
\[= 39_{\text{ten}} \]

\[X = 11100110_{\text{two}} \]
\[-X = 00011010 \]
\[= 2^4 + 2^3 + 2^1 = 16 + 8 + 2 \]
\[= 26_{\text{ten}} \]
\[X = -26_{\text{ten}} \]

Assuming 8-bit 2’s complement numbers.
Numeric Ranges

Example: Assume 16-bit numbers

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned Max</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>Signed Max</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Signed Min</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsig. Max</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Signed Max</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Signed Min</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

C Programming

- `#include <limits.h>`
- Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
- Values platform specific
What happens if you change the type of a variable (aka type casting)?
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

Mapping:
- Signed 0 to Unsigned 0
- Signed 1 to Unsigned 1
- Signed 2 to Unsigned 2
- ...
Signed vs. Unsigned in C

- **Constants**
 - By default, signed integers
 - Unsigned with “U” as suffix
 - 0U, 4294967259U

- **Casting**
 - Explicit casting between signed & unsigned
    ```c
    int tx, ty;
    unsigned ux, uy;
    tx = (int) ux;
    uy = (unsigned) ty;
    ```
 - Implicit casting also occurs via assignments and procedure calls
    ```c
    tx = ux;
    uy = ty;
    ```
Casting Surprises

• Expression Evaluation
 – If there is a mix of unsigned and signed in single expression,

 signed values implicitly cast to unsigned
 – Including comparison operations <, >, ==, <=, >=
Expanding and Truncating a variable
Expanding

- Convert \(w \)-bit signed integer to \(w+k \)-bit with same value
- Convert unsigned: pad \(k \) 0 bits in front
- Convert signed: make \(k \) copies of sign bit
Sign Extension Example

short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension
Truncating

• Example: from int to short (i.e. from 32-bit to 16-bit)
• High-order bits are truncated
• Value is altered → must reinterpret
• This non-intuitive behavior can lead to buggy code!
Addition, negation, multiplication, and shifting
Negation: Complement & Increment

- The complement of x satisfies
 \[\text{Two'sComp}(x) + x = 0 \]
 \[\text{Two'sComp}(x) = \neg x + 1 \]

- Proof sketch
 - Observation: \(\neg x + x = 1111...111 = -1 \)

\[
\begin{array}{c}
 x \quad 10011101 \\
 + \quad \neg x \quad 01100010 \\
 \hline
 -1 \quad 11111111
\end{array}
\]
Unsigned Addition

Operands: w bits

True Sum: $w+1$ bits

Discard Carry: w bits
Two's Complement Addition

- If \(\text{sum} \geq 2^{w-1} \), becomes negative (positive overflow)
- If \(\text{sum} < -2^{w-1} \), becomes positive (negative overflow)
Multiplication

• Exact Product of w-bit numbers x, y
 – Either signed or unsigned

• Ranges
 – Unsigned: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 – Two’s complement min: $x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}$
 – Two’s complement max: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$
Power-of-2 Multiply with Shift

• Operation
 – $u \ll k$ gives $u \times 2^k$
 – Both signed and unsigned

• Examples
 – $u \ll 3 = u \times 8$
 – $(u \ll 5) - (u \ll 3) = u \times 24$
 – Most machines shift and add faster than multiply
 • Compiler generates this code automatically
Compiled Multiplication Code

C Function

```c
int mul12(int x)
{
    return x*12;
}
```

Compiled Arithmetic Operations

- leal (%eax,%eax,2), %eax
- sall $2, %eax

Explanation

- \(t = x + x \times 2 \)
- return \(t \ll 2 \);

- *C compiler automatically generates shift/add code when multiplying by constant*
Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)

Examples:

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x >> 1</td>
<td>7606.5</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x >> 4</td>
<td>950.8125</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>x >> 8</td>
<td>59.4257813</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Compiled Unsigned Division Code

C Function

```c
unsigned udiv8(unsigned x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

```c
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>
Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x >> k$ gives $\lfloor \frac{x}{2^k} \rfloor$
 - Uses arithmetic shift

Examples

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y >> 1$</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>$y >> 4$</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>$y >> 8$</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Floating Points
Background: Fractional binary numbers

• What is \(1011.101_2\)?
Background: Fractional Binary Numbers

- Value: \(\sum_{k=-j}^{i} b_k \times 2^k \)
Fractional Binary Numbers: Examples

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 3/4</td>
<td>101.11₂</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.111₁₂</td>
</tr>
</tbody>
</table>

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- 0.111111...₂ is just below 1.0
 - \(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^i} + \ldots \rightarrow 1.0 \)
Why not fractional binary numbers?

• Not efficient
 - $3 \times 2^{100} \rightarrow 1010000000 \ldots 0$
 - Given a finite length (e.g. 32-bits), cannot represent very large nor very small numbers ($\epsilon \rightarrow 0$)
IEEE Floating Point

• IEEE Standard 754
 – Supported by all major CPUs

• Driven by numerical concerns
 – Standards for rounding, overflow, underflow
 – Hard to make fast in hardware
 • Numerical analysts predominated over hardware designers in defining standard
Floating Point Representation

• Numerical Form:
 \((-1)^s M \times 2^E\)
 – Sign bit \(s\) determines whether number is negative or positive
 – Significand \(M\) a fractional value in range \([1.0, 2.0)\) or \([0, 1.0)\)
 – Exponent \(E\) weights value by power of two

• Encoding
 – MSB \(s\) is sign bit \(s\)
 – exp field encodes \(E\)
 – frac field encodes \(M\)
Precisions

• **Single precision: 32 bits**

 - Sign (s) 1-bit
 - Exponent (exp) 8-bits
 - Fraction (frac) 23-bits

• **Double precision: 64 bits**

 - Sign (s) 1-bit
 - Exponent (exp) 11-bits
 - Fraction (frac) 52-bits

• **Extended precision: 80 bits (Intel only)**

 - Sign (s) 1-bit
 - Exponent (exp) 15-bits
 - Fraction (frac) 63 or 64-bits
Based on exp we have 3 encoding schemes

- $\exp \neq \text{000...0 or 11...1} \rightarrow$ normalized encoding
- $\exp = \text{000...0} \rightarrow$ denormalized encoding
- $\exp = \text{1111...1} \rightarrow$ special value encoding
 - $\text{frac} = \text{000...0}$
 - $\text{frac} = \text{something else}$
1. Normalized Encoding

- **Condition**: exp ≠ 000...0 and exp ≠ 111...1

 referred to as Bias

- **Exponent is**: \(E = \text{Exp} - (2^{k-1} - 1) \), \(k \) is the # of exponent bits
 - Single precision: \(E = \text{exp} - 127 \)
 - Double precision: \(E = \text{exp} - 1023 \)

- **Significand is**: \(M = 1.xxx...x_2 \)
 - Range(\(M \)) = \([1.0, 2.0-\epsilon]\)
 - Get extra leading bit for free
Normalized Encoding Example

- **Value**: $F = 15213.0$;
 - $15213_{10} = 11101101101101_2$
 - $= 1.1101101101101_2 \times 2^{13}$

- **Significand**
 - $M = 1.1101101101101_2$
 - $\frac{frac}{= 110110110110100000000000_2}$

- **Exponent**
 - $E = \text{exp} - \text{Bias} = \text{exp} - 127 = 13$
 - $\Rightarrow \text{exp} = 140 = 10001100_2$

- **Result**:

 \[
 \begin{array}{c|c|c}
 s & \text{exp} & \text{frac} \\
 \hline
 0 & 10001100 & 1101101101101101000000000000
 \end{array}
 \]
2. Denormalized Encoding

• **Condition:** \(\exp = 000...0 \)

• **Exponent value:** \(E = 1 - \text{Bias} \) (instead of \(E = 0 - \text{Bias} \))
• **Significand is:** \(M = 0.xxx...x, \frac{\text{frac}}{2} \) (instead of \(M=1.xxx_2 \))

• **Cases**
 - \(\exp = 000...0, \frac{\text{frac}}{\text{frac}} = 000...0 \)
 • Represents zero
 • Note distinct values: +0 and −0
 - \(\exp = 000...0, \frac{\text{frac}}{\text{frac}} \neq 000...0 \)
 • Numbers very close to 0.0
3. Special Values Encoding

- **Condition:** $\text{exp} = 111...1$

- **Case:** $\text{exp} = 111...1, \text{frac} = 000...0$
 - Represents value ∞ (infinity)
 - Operation that overflows
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

- **Case:** $\text{exp} = 111...1, \text{frac} \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., $\sqrt{-1}$, $\infty - \infty$, $\infty \times 0$
Visualization: Floating Point Encodings

Diagram showing the range of floating point encodings with:
- $\pm\infty$
- Normalized
- Denormalized
- NaN
- 0

The diagram illustrates the positions of these encodings on a number line.
Floating Point in C

- **C:**
 - `float` single precision
 - `double` double precision

- **Conversions/Casting**
 - Casting between `int`, `float`, and `double` changes bit representation, examples:
 - `double/float` → `int`
 - Truncates fractional part
 - Not defined when out of range or NaN
 - `int` → `double`
 - Exact conversion
Conclusions

• Everything is stored in memory as 1s and 0s
• The binary presentation by itself does not carry a meaning, it depends on the interpretation.
• When to use signed and when to use unsigned?
• IEEE Floating Point has clear mathematical properties
• Represents numbers as: \((-1)^{S} \times M \times 2^{E}\)
• One can reason about operations independent of implementation
 – As if computed with perfect precision and then rounded