Quick Sort
Quick Sort: a randomized sorting algorithm

QSort(L):

choose \(p \) from \(L \) *at random*

partition \(L \) into 3 sublists: \(L_{<p}, L_{=p}, L_{>p} \)

if \(|L_{<p}| > 0\) then \(L_{<p} \leftarrow QSort(L_{<p}) \)

if \(|L_{>p}| > 0\) then \(L_{>p} \leftarrow QSort(L_{>p}) \)

return \(L_{<p} \parallel L_{=p} \parallel L_{>p} \)

Practical implementation:

- use the fast, in-place partition algorithm from last time
Intuition:
we split the problem into two problems of “roughly equal” size (in linear time) and then solve both of them
reminds us of the recurrence $T(n) \leq 2T(n/2) + O(n)$
Master Theorem says: $T(n) = O(n \log n)$
BUT . . . this is not rigorous: the splitting step is probabilistic, and we may get some “bad” splits
Quick and dirty analysis of Quick Sort

Idea: leverage our randomized Quick Select analysis

Imagine that L is sorted, and for each $k = 1, \ldots, n$, we can consider the kth element x_k in the sorted list.

Let D_k be the number of levels at which x_k occurs in the recursion tree.

For $j = 0, 1, \ldots$, let $S_j :=$ number of items at level j.

$W :=$ number of comparisons $\leq \sum_{j \geq 0} S_j \leq \sum_{k=1}^{n} D_k$.
Let D_k be the number of levels at which x_k occurs in the recursion tree.

For $j = 0, 1, \ldots$, let $S_j := \text{number of items at level } j$.

$W := \text{number of comparisons} \leq \sum_{j \geq 0} S_j \leq \sum_{k=1}^{n} D_k$.

Key observation: the distribution of D_k is precisely the same as the distribution of the recursion depth of $QSelect(L,k)$.

Idea: from x_k’s point of view, we are just running $QSelect(L,k)$.

Therefore: $E[D_k] = O(\log n)$ for each k, and

$$E[W] \leq \sum_{k=1}^{n} E[D_k] = O(n \log n)$$
Expected Depth of Quick Sort Recursion

Let $D := \text{number of levels in the recursion tree for } QSort \text{ on inputs of length } n$

Theorem: $E[D] = O(\log n)$

Notes:

The $QSelect$ depth analysis does not apply — again, $E[\max\{X, Y\}] \neq \max\{E[X], E[Y]\}$

$E[D]$ can also be viewed as the average height of a randomly built binary search tree
The recursion tree in more detail . . .

\[N_i \] := size of node \(i \)

\(\mathcal{L}_j \) := set of indices at level \(j \)

\(T_j := \sum_{i \in \mathcal{L}_j} N_i^2 \)

The \(N_i \)'s and \(T_j \)'s are random variables

Claim: \(\mathbb{E}[T_j] \leq (2/3)^j n^2 \) for \(j = 0, 1, 2, \ldots \)
Slight detour: estimating sums by integrals

If f is continuous and monotone on $[a, b]$, $m := \min(f(a), f(b))$, and $M := \max(f(a), f(b))$:

$$
\int_a^b f(x)dx + m \leq \sum_{i=a}^b f(i) \leq \int_a^b f(x)dx + M
$$

If f is continuous and nondecreasing on $[a - 1, b + 1]$, then

$$
\int_{a-1}^b f(x)dx \leq \sum_{i=a}^b f(i) \leq \int_a^{b+1} f(x)dx
$$

If f is continuous and nonincreasing on $[a - 1, b + 1]$, then

$$
\int_a^{b+1} f(x)dx \leq \sum_{i=a}^b f(i) \leq \int_a^b f(x)dx
$$
Let’s first prove that $E[T_1] \leq (2/3)n^2$

$$T_1 = N_2^2 + N_3^2$$

Imagine the items are in L are sorted

Let R be the index of the pivot in the sorted list

R is uniformly distributed over $\{1, \ldots, n\}$

$N_2 \leq R - 1$ and $N_3 \leq n - R$

$$E[(R - 1)^2] = \sum_{i=1}^{n} (i - 1)^2/n = \frac{1}{n} \sum_{i=0}^{n-1} i^2$$

$$\leq \frac{1}{n} \int_{0}^{n} x^2 \, dx = \frac{1}{n} \cdot \frac{n^3}{3} = \frac{n^2}{3}$$
The distribution of \(n - R \) is the same as that of \(R - 1 \). Thus, \(E[N_2^2] \leq n^2/3 \), \(E[N_3^2] \leq n^2/3 \), and
\[
E[T_1] = E[N_2^2] + E[N_3^2] \leq (2/3)n^2
\]
More generally, consider any node \(i \) in the tree

“Law of total expectation”:
\[
E[N_{2i}^2] = \sum_m E[N_{2i}^2 \mid N_i = m] \Pr[N_i = m] \\
\leq \sum_m (m^2/3) \Pr[N_i = m] = (1/3) E[N_i^2]
\]

Similarly, \(E[N_{2i+1}^2] \leq (1/3) E[N_i^2] \)

This shows: \(E[T_{j+1}] \leq (2/3) E[T_j] \) for \(j \geq 0 \)
Implies claim: $E[T_j] \leq (2/3)^j n^2$ for $j \geq 0$ (induction)

Recall: $E[D] = \sum_{j \geq 1} \Pr[D \geq j]$

Observe: $D \geq j \iff T_{j-1} \geq 1$

Markov: $\Pr[T_{j-1} \geq 1] \leq E[T_{j-1}] \leq (2/3)^{j-1} n^2$

A calculation almost identical to that for QSelect:

$$E[D] = \sum_{j \geq 1} \Pr[D \geq j]$$

$$= \sum_{(2/3)^{j-1} n^2 > 1} \Pr[D \geq j] + \sum_{(2/3)^{j-1} n^2 \leq 1} \Pr[D \geq j]$$

$$\leq \log_{3/2} n^2 + 4 = O(\log n)$$
Since the work per level is $O(n)$, this gives another proof that the expected running time of $QSort$ is $O(n \log n)$

But … constants are suboptimal

Homework develops alternative analyses of $QSelect$ and $QSort$ with optimal constants