Selection
General problem: Given a list L of n items, and $k \in \{1, \ldots, n\}$, find kth smallest element in L

Special case: $k = \lfloor n/2 \rfloor$... the median

One solution: sort the items into increasing order, return kth entry in the sorted list

This takes time $O(n \log n)$

We can do better: linear time!

- a randomized algorithm with expected running time $O(n)$
- a deterministic algorithm with running time $O(n)$
Quick Select: a randomized selection algorithm

\textit{QSelect}(L, k):

- Choose \(p \) from \(L \) \textit{at random}
- Partition \(L \) into 3 sublists: \(L_{<p}, L_{=p}, L_{>p} \)
- If \(k \leq |L_{<p}| \) then
 - return \(\textit{QSelect}(L_{<p}, k) \)
- Else if \(k \leq |L_{<p}| + |L_{=p}| \) then
 - return \(p \)
- Else // \(k > |L_{<p}| + |L_{=p}| \)
 - return \(\textit{QSelect}(L_{>p}, k - |L_{<p}| - |L_{=p}|) \)
Intuition:

we split the problem into two problems of “roughly equal” size (in linear time) and then solve one of them

reminds us of the recurrence $T(n) \leq T(n/2) + O(n)$

Master Theorem says: $T(n) = O(n)$

BUT . . . this is not rigorous: the splitting step is probabilistic, and we may get some “bad” splits
Let $W :=$ number of comparisons

Theorem. $E[W] = O(n)$

For $j = 0, 1, 2, \ldots$ let $N_j :=$ size of the subproblem at level j (or zero if none)

Claim. $E[N_j] \leq (3/4)^j n$ and for each $j = 0, 1, 2, \ldots$

Using the claim:

$$W \leq N_0 + N_1 + \cdots$$

$$E[W] \leq E[N_0] + E[N_1] + \cdots$$

$$\leq n \sum_{j \geq 0} (3/4)^j$$

$$= (1/(1 - 3/4))n = 4n$$
Proof of Claim.

$N_0 = n$

Let’s first prove that $E[N_1] \leq (3/4)n$

Imagine the items in L are sorted

Let R the index of the pivot p in the sorted list

R is uniformly distributed over $\{1, \ldots, n\}$

$|L_{< p}| \leq R - 1$ and $|L_{> p}| \leq n - R$

$\therefore N_1 \leq \max\{R - 1, n - R\}$
A calculation . . .

Assume R uniform over $\{1, \ldots, n\}$

Want to show: $E[\max\{R - 1, n - R\}] \leq (3/4)n$

NOTE: $E[\max\{X, Y\}] \not\leq \max\{E[X], E[Y]\}$

Proof by picture ($n = 8$):

![Diagram showing expectation ≤ 1/n times shaded area](image.png)
To recap: we have proved $E[N_1] \leq (3/4)n$

What about N_2? Use conditional expectation:

$$E[N_2] = \sum_m E[N_2 | N_1 = m] \Pr[N_1 = m]$$

same analysis as N_1

$$\leq \sum_m \left(\frac{3}{4}m\right) \Pr[N_1 = m]$$

$$= \left(\frac{3}{4}\right) E[N_1] \leq \left(\frac{3}{4}\right)^2 n$$

By induction: $E[N_j] \leq (3/4)^j$ for $j = 0, 1, 2, \ldots$
Analysis of recursion depth

Let $D :=$ the depth of the recursion (number of levels)

Theorem. $E[D] = O(\log n)$

Recall: $E[D] = \sum_{j \geq 1} Pr[D \geq j]$

Observe: $D \geq j \iff N_{j-1} \geq 1$

Markov says: $Pr[N_{j-1} \geq 1] \leq E[N_{j-1}] \leq (3/4)^{j-1} n$

$E[D] = \sum_{j \geq 1} Pr[D \geq j]$

$$= \sum_{(3/4)^{j-1} n > 1} Pr[D \geq j] + \sum_{(3/4)^{j-1} n \leq 1} Pr[D \geq j]$$
Set $j_0 := \lceil \log_{4/3} n \rceil$

We have:

$$E[D] = \sum_{j \geq 1} \Pr[D \geq j]$$

$$= \sum_{(3/4)^{j-1}n > 1} \Pr[D \geq j] + \sum_{(3/4)^{j-1}n \leq 1} \Pr[D \geq j]$$

$$\leq \sum_{j=1}^{j_0} 1 + \sum_{j=j_0+1}^{\infty} (3/4)^{j-1}n$$

$$\leq j_0 + \sum_{j=0}^{\infty} (3/4)^{j} \leq \log_{4/3} n + 5$$
Practical aspects: a fast, in-place partitioning algorithm

An idea from Bentley & McIlroy (1993)

\[
\begin{array}{|c|c|c|c|}
\hline
& < & ? & > \\
\hline
a & b & c & d \\
\hline
\end{array}
\]

Two inner loops:
- moving \(b \): scan over \(<\), swap \(=\), halt on \(>\)
- moving \(c \): scan over \(>\), swap \(=\), halt on \(<\)

Swap elements \(b \) and \(c \), \(b++ \), \(c-- \)

Repeat until \(b \) crosses \(c \)

When finished, the \(= \)'s are swapped to the middle
Deterministic linear-time selection

Idea:

- divide L into $\approx n/5$ blocks of size 5
- sort each block, and compute median of each block
- let $M :=$ the list of medians (so $|M| \approx n/5$)
- recursively find the median p of M
- use p as the pivot, and proceed as in Quick Select
Consider a single recursive invocation

Local cost is $O(n)$

Both $|L_{<\rho}|$ and $|L_{>\rho}|$ are $\leq (7/10)n + O(1)$

Two recursive calls:

- one of size at most $n/5 + O(1)$
- one of size at most $(7/10)n + O(1)$
Sum of subproblem sizes is $\leq 0.9n + c$, for some constant c

Choose n_0 such that $0.9n + c \leq 0.91n$ for all $n \geq n_0$

Implementation: halt recursion when $n < n_0$

Let $s_j := \text{sum of problem sizes at level } j$, for $j = 0, 1, 2, \ldots$

We have $s_j \leq (0.91)^j n$ for $j = 0, 1, 2, \ldots$

Total cost is $O(w)$, where

$$w := \sum_{j \geq 0} s_j \leq \sum_{j \geq 0} (0.91)^j n \leq \frac{100}{9} n$$