Goal: show 3SAT is \textbf{NP}-complete

Need to show $D \leq_{P} 3\text{SAT}$ for all $D \in \textbf{NP}$

Formalizing computation:

- Define an idealized model of computation
- RAM: Random Access Machine
- Reads bits from an input tape
- Writes bits to an output tape
- Random access memory
- Simple instruction set
Random Access Memory (RAM)

Input Tape

Control Unit

Output Tape

Random Access Memory
Instruction Set:

- `add 17, 18, 20` # \(m[20] \leftarrow m[17] + m[18] \)
- `sub 17, 18, 20` # \(m[20] \leftarrow m[17] - m[18] \)
- `mul 17, 18, 20` # \(m[20] \leftarrow m[17] \cdot m[18] \)
- `div 17, 18, 20` # \(m[20] \leftarrow \lfloor \frac{m[17]}{m[18]} \rfloor \)
- `ldc 17, 20` # \(m[20] \leftarrow 17 \)
- `lddd 17, 20` # \(m[20] \leftarrow m[17] \)
- `ldi 17, 20` # \(m[20] \leftarrow m[m[17]] \)
- `sti 17, 20` # \(m[m[20]] \leftarrow m[17] \)
- `b 100` # branch to 100
- `bpos 17, 100` # branch to 100 if \(m[17] > 0 \)
- `bz 17, 100` # branch to 100 if \(m[17] = 0 \)
- `halt`
- `read 20` # \(m[20] \leftarrow \) read bit
- `write 17` # write \(m[17] \)
Polynomial time:

\[n = \text{input length} \]

Requirement: Number of instructions executed
\[\leq p(n) \text{ for some polynomial } p \]

Requirement: Number in each memory cell \(\leq p'(n) \)
in absolute value for some polynomial \(p' \)

Implication: highest memory cell addressed is
\[\leq p''(n) \text{ for some polynomial } p'' \]
Circuit Satisfiability (CSAT): a first NP-complete problem

Instance:

- A Boolean circuit C:
 - inputs x_1, \ldots, x_n
 - constant gates (0, 1)
 - AND, OR, NOT gates
 - AND, OR take 2 inputs
 - unrestricted “fan out”
 - A single bit output

Question:

- is there an assignment to the inputs x_1, \ldots, x_n such that $C(x_1, \ldots, x_n) = 1$?
Linearized representation:

\[x_4 \leftarrow x_1 \land x_2 \]
\[x_5 \leftarrow \overline{x_1} \]
\[x_6 \leftarrow x_3 \lor x_4 \]
\[x_7 \leftarrow x_4 \lor x_5 \]
\[x_8 \leftarrow x_6 \land x_7 \]
Proof that CSAT is \mathbf{NP}-complete

Need to show that CSAT is \mathbf{NP}-hard, i.e., $D \leq_P \text{CSAT}$ for all $D \in \mathbf{NP}$

Let $D \in \mathbf{NP}$

We know there is a poly-time computable function S such that

$$D(x) = 1 \iff S(x, w) = 1 \text{ for some short } w$$

Let M be the polynomial time RAM that computes S
Proof (cont’d):

The current configuration of M is $\alpha = (m, p, r, y, z)$, where

m: contents of all memory cells
p: program counter
r: position of input “read head”
y: contents of input tape
z: contents of output tape

There is a function f_{next} that maps a configuration α to the successor configuration $f_{\text{next}}(\alpha)$.

Configurations can be encoded as polynomial-sized bit strings.

The function f_{next} can be realized by a polynomial-sized circuit C_{next}.
input: \(w \)

\[\langle x, \cdot \rangle \]

``pairing circuit''

\(x \) is ``hardwired''

\(\alpha_0 \)

\[m \quad p \quad r \quad y \quad z \]

\(C_{\text{next}} \)

\(\alpha_1 \)

\[m \quad p \quad r \quad y \quad z \]

\(C_{\text{next}} \)

\[\vdots \]

\(\alpha_t \)

\[m \quad p \quad r \quad y \quad z \]

output
Satisfiability (SAT)

Instance:

- A Boolean formula ϕ:
 - variables x_1, \ldots, x_n
 - constants 0, 1
 - operators \lor, \land, \neg
 - Parentheses

Question:

- is there an assignment to the variables x_1, \ldots, x_n such that $\phi(x_1, \ldots, x_n) = 1$?

Formulas are essentially circuits with fan-out restricted to 1
A simple reduction: $\text{CSAT} \leq \text{P SAT}$

- Let “$\phi_1 \iff \phi_2$” be shorthand for “$(\phi_1 \land \phi_2) \lor (\bar{\phi_1} \land \bar{\phi_2})$”

Circuit C:

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Formula ϕ:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_4 \leftarrow x_1 \land x_2$</td>
<td>$(x_4 \iff (x_1 \land x_2)) \land$</td>
</tr>
<tr>
<td>$x_5 \leftarrow \bar{x_1}$</td>
<td>$(x_5 \iff (\bar{x_1})) \land$</td>
</tr>
<tr>
<td>$x_6 \leftarrow x_3 \lor x_4$</td>
<td>$(x_6 \iff (x_3 \lor x_4)) \land$</td>
</tr>
<tr>
<td>$x_7 \leftarrow x_4 \lor x_5$</td>
<td>$(x_7 \iff (x_4 \lor x_5)) \land$</td>
</tr>
<tr>
<td>$x_8 \leftarrow x_6 \land x_7$</td>
<td>$(x_8 \iff (x_6 \land x_7)) \land$</td>
</tr>
</tbody>
</table>

- It is clear that C is satisfiable $\iff \phi$ is satisfiable
3SAT: a special case of SAT

Conjunctive Normal Form:

- a conjunction (\(\land \)) of *clauses*
- each clause is a disjunction (\(\lor \)) of *literals*
- each literal is a variable \(x \) or its complement \(\bar{x} \)

Examples:

\[x \land y, \quad \bar{x} \land (y \lor z), \quad (x \lor y \lor \bar{z}) \land (w \lor \bar{x} \lor z) \]

A special form: 3-CNF

- Each clause consists of 3 distinct literals

The 3SAT problem:

- Instance: a 3-CNF formula
- Question: does it have a satisfying assignment?
Fact: every formula ψ in 1–3 variables can be rewritten as a 3-CNF formula (with at most 8 clauses)

- Add extra variables to make $\#$ of variables $= 3$
- Write down truth table for $\bar{\psi}$
- Read off *disjunctive* normal form formula from truth table
- Negate this formula, using DeMorgan’s law to get 3-CNF
Proof that $3SAT$ is NP-hard

- Reduction: $CSAT \leq_p 3SAT$
- Let $N(\psi)$ be a 3-CNF formula representing ψ

Circuit C:

- $x_4 \leftarrow x_1 \land x_2$
- $x_5 \leftarrow \overline{x_1}$
- $x_6 \leftarrow x_3 \lor x_4$
- $x_7 \leftarrow x_4 \lor x_5$
- $x_8 \leftarrow x_6 \land x_7$

Formula ϕ:

- $N(x_4 \iff (x_1 \land x_2)) \land$
- $N(x_5 \iff (\overline{x_1})) \land$
- $N(x_6 \iff (x_3 \lor x_4)) \land$
- $N(x_7 \iff (x_4 \lor x_5)) \land$
- $N(x_8 \iff (x_6 \land x_7)) \land$
- $N(x_8)$
Coping with NP-completeness

Heuristics:
- Very fast SAT-solvers widely used
- Exponential worst-case running time
- Much faster for many “typical” inputs

Approximation algorithms:
- Example: compilers use heuristic algorithms for graph coloring to do register allocation
- Results may not be optimal, but “close enough”

Still an active area of research:
- Proving NP-completeness is just the first step
- This tells us we should focus on finding good heuristic and/or approximation algorithms